Positive measure spectrum for Schrödinger operators with periodic magnetic fields

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Externe Organisationen

  • University of Arizona
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1584-1595
Seitenumfang12
FachzeitschriftJournal of mathematical physics
Jahrgang44
Ausgabenummer4
PublikationsstatusVeröffentlicht - 1 Apr. 2003
Extern publiziertJa

Abstract

We study Schrödinger operators with periodic magnetic field in ℝ2, in the case of irrational magnetic flux. Positive measure Cantor spectrum is generically expected in the presence of an electric potential. We show that, even without electric potential, the spectrum has positive measure if the magnetic field is a perturbation of a constant one.

ASJC Scopus Sachgebiete

Zitieren

Positive measure spectrum for Schrödinger operators with periodic magnetic fields. / Gruber, Michael J.
in: Journal of mathematical physics, Jahrgang 44, Nr. 4, 01.04.2003, S. 1584-1595.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{3b57d25fdcfe44c28f25f15e9d3d1e5c,
title = "Positive measure spectrum for Schr{\"o}dinger operators with periodic magnetic fields",
abstract = "We study Schr{\"o}dinger operators with periodic magnetic field in ℝ2, in the case of irrational magnetic flux. Positive measure Cantor spectrum is generically expected in the presence of an electric potential. We show that, even without electric potential, the spectrum has positive measure if the magnetic field is a perturbation of a constant one.",
author = "Gruber, {Michael J.}",
year = "2003",
month = apr,
day = "1",
doi = "10.1063/1.1556551",
language = "English",
volume = "44",
pages = "1584--1595",
journal = "Journal of mathematical physics",
issn = "0022-2488",
publisher = "American Institute of Physics",
number = "4",

}

Download

TY - JOUR

T1 - Positive measure spectrum for Schrödinger operators with periodic magnetic fields

AU - Gruber, Michael J.

PY - 2003/4/1

Y1 - 2003/4/1

N2 - We study Schrödinger operators with periodic magnetic field in ℝ2, in the case of irrational magnetic flux. Positive measure Cantor spectrum is generically expected in the presence of an electric potential. We show that, even without electric potential, the spectrum has positive measure if the magnetic field is a perturbation of a constant one.

AB - We study Schrödinger operators with periodic magnetic field in ℝ2, in the case of irrational magnetic flux. Positive measure Cantor spectrum is generically expected in the presence of an electric potential. We show that, even without electric potential, the spectrum has positive measure if the magnetic field is a perturbation of a constant one.

UR - http://www.scopus.com/inward/record.url?scp=0037396270&partnerID=8YFLogxK

U2 - 10.1063/1.1556551

DO - 10.1063/1.1556551

M3 - Article

AN - SCOPUS:0037396270

VL - 44

SP - 1584

EP - 1595

JO - Journal of mathematical physics

JF - Journal of mathematical physics

SN - 0022-2488

IS - 4

ER -

Von denselben Autoren