Positive equilibrium solutions for age- and spatially-structured population models

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Christoph Walker

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1366-1387
Seitenumfang22
FachzeitschriftSIAM Journal on Mathematical Analysis
Jahrgang41
Ausgabenummer4
PublikationsstatusVeröffentlicht - 2009

Abstract

The existence of positive equilibrium solutions to age-dependent population equations with nonlinear diffusion is studied in an abstract setting. By introducing a bifurcation parameter measuring the intensity of the fertility, it is shown that a bran ch of (positive) equilibria bifurcates from the trivial equilibrium. In some cases the direction of bifu rcation is analyzed.

ASJC Scopus Sachgebiete

Zitieren

Positive equilibrium solutions for age- and spatially-structured population models. / Walker, Christoph.
in: SIAM Journal on Mathematical Analysis, Jahrgang 41, Nr. 4, 2009, S. 1366-1387.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{9d8318b30b8340c6a9276a912d2d672c,
title = "Positive equilibrium solutions for age- and spatially-structured population models",
abstract = "The existence of positive equilibrium solutions to age-dependent population equations with nonlinear diffusion is studied in an abstract setting. By introducing a bifurcation parameter measuring the intensity of the fertility, it is shown that a bran ch of (positive) equilibria bifurcates from the trivial equilibrium. In some cases the direction of bifu rcation is analyzed.",
keywords = "Age structure, Bifurcation, Nonlinear diffusion, Population models",
author = "Christoph Walker",
note = "Copyright: Copyright 2010 Elsevier B.V., All rights reserved.",
year = "2009",
doi = "10.1137/090750044",
language = "English",
volume = "41",
pages = "1366--1387",
journal = "SIAM Journal on Mathematical Analysis",
issn = "0036-1410",
publisher = "Society for Industrial and Applied Mathematics Publications",
number = "4",

}

Download

TY - JOUR

T1 - Positive equilibrium solutions for age- and spatially-structured population models

AU - Walker, Christoph

N1 - Copyright: Copyright 2010 Elsevier B.V., All rights reserved.

PY - 2009

Y1 - 2009

N2 - The existence of positive equilibrium solutions to age-dependent population equations with nonlinear diffusion is studied in an abstract setting. By introducing a bifurcation parameter measuring the intensity of the fertility, it is shown that a bran ch of (positive) equilibria bifurcates from the trivial equilibrium. In some cases the direction of bifu rcation is analyzed.

AB - The existence of positive equilibrium solutions to age-dependent population equations with nonlinear diffusion is studied in an abstract setting. By introducing a bifurcation parameter measuring the intensity of the fertility, it is shown that a bran ch of (positive) equilibria bifurcates from the trivial equilibrium. In some cases the direction of bifu rcation is analyzed.

KW - Age structure

KW - Bifurcation

KW - Nonlinear diffusion

KW - Population models

UR - http://www.scopus.com/inward/record.url?scp=73349088104&partnerID=8YFLogxK

U2 - 10.1137/090750044

DO - 10.1137/090750044

M3 - Article

AN - SCOPUS:73349088104

VL - 41

SP - 1366

EP - 1387

JO - SIAM Journal on Mathematical Analysis

JF - SIAM Journal on Mathematical Analysis

SN - 0036-1410

IS - 4

ER -