Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 27-48 |
Seitenumfang | 22 |
Fachzeitschrift | Journal of Mathematical Imaging and Vision |
Jahrgang | 22 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Jan. 2005 |
Extern publiziert | Ja |
Abstract
2D-3D pose estimation means to estimate the relative position and orientation of a 3D object with respect to a reference camera system. This work has its main focus on the theoretical foundations of the 2D-3D pose estimation problem: We discuss the involved mathematical spaces and their interaction within higher order entities. To cope with the pose problem (how to compare 2D projective image features with 3D Euclidean object features), the principle we propose is to reconstruct image features (e.g. points or lines) to one dimensional higher entities (e.g. 3D projection rays or 3D reconstructed planes) and express constraints in the 3D space. It turns out that the stratification hierarchy [11] introduced by Faugeras is involved in the scenario. But since the stratification hierarchy is based on pure point concepts a new algebraic embedding is required when dealing with higher order entities. The conformal geometric algebra (CGA) [24] is well suited to solve this problem, since it subsumes the involved mathematical spaces. Operators are defined to switch entities between the algebras of the conformal space and its Euclidean and projective subspaces. This leads to another interpretation of the stratification hierarchy, which is not restricted to be based solely on point concepts. This work summarizes the theoretical foundations needed to deal with the pose problem. Therefore it contains mainly basics of Euclidean, projective and conformal geometry. Since especially conformal geometry is not well known in computer science, we recapitulate the mathematical concepts in some detail. We believe that this geometric model is useful also for many other computer vision tasks and has been ignored so far. Applications of these foundations are presented in Part II.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Statistik und Wahrscheinlichkeit
- Mathematik (insg.)
- Modellierung und Simulation
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Informatik (insg.)
- Maschinelles Sehen und Mustererkennung
- Mathematik (insg.)
- Geometrie und Topologie
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Mathematical Imaging and Vision, Jahrgang 22, Nr. 1, 01.2005, S. 27-48.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Pose estimation in conformal geometric algebra part I
T2 - The stratification of mathematical spaces
AU - Rosenhahn, Bodo
AU - Sommer, Gerald
N1 - Funding information: We would like to thank Oliver Granert, Daniel Grest, Norbert Krüger and Christian Perwass for fruitful discussions and hints for performing this work. This work has been supported by DFG Graduiertenkolleg No. 357 and by EC Grant IST-2001-3422 (VISATEC).
PY - 2005/1
Y1 - 2005/1
N2 - 2D-3D pose estimation means to estimate the relative position and orientation of a 3D object with respect to a reference camera system. This work has its main focus on the theoretical foundations of the 2D-3D pose estimation problem: We discuss the involved mathematical spaces and their interaction within higher order entities. To cope with the pose problem (how to compare 2D projective image features with 3D Euclidean object features), the principle we propose is to reconstruct image features (e.g. points or lines) to one dimensional higher entities (e.g. 3D projection rays or 3D reconstructed planes) and express constraints in the 3D space. It turns out that the stratification hierarchy [11] introduced by Faugeras is involved in the scenario. But since the stratification hierarchy is based on pure point concepts a new algebraic embedding is required when dealing with higher order entities. The conformal geometric algebra (CGA) [24] is well suited to solve this problem, since it subsumes the involved mathematical spaces. Operators are defined to switch entities between the algebras of the conformal space and its Euclidean and projective subspaces. This leads to another interpretation of the stratification hierarchy, which is not restricted to be based solely on point concepts. This work summarizes the theoretical foundations needed to deal with the pose problem. Therefore it contains mainly basics of Euclidean, projective and conformal geometry. Since especially conformal geometry is not well known in computer science, we recapitulate the mathematical concepts in some detail. We believe that this geometric model is useful also for many other computer vision tasks and has been ignored so far. Applications of these foundations are presented in Part II.
AB - 2D-3D pose estimation means to estimate the relative position and orientation of a 3D object with respect to a reference camera system. This work has its main focus on the theoretical foundations of the 2D-3D pose estimation problem: We discuss the involved mathematical spaces and their interaction within higher order entities. To cope with the pose problem (how to compare 2D projective image features with 3D Euclidean object features), the principle we propose is to reconstruct image features (e.g. points or lines) to one dimensional higher entities (e.g. 3D projection rays or 3D reconstructed planes) and express constraints in the 3D space. It turns out that the stratification hierarchy [11] introduced by Faugeras is involved in the scenario. But since the stratification hierarchy is based on pure point concepts a new algebraic embedding is required when dealing with higher order entities. The conformal geometric algebra (CGA) [24] is well suited to solve this problem, since it subsumes the involved mathematical spaces. Operators are defined to switch entities between the algebras of the conformal space and its Euclidean and projective subspaces. This leads to another interpretation of the stratification hierarchy, which is not restricted to be based solely on point concepts. This work summarizes the theoretical foundations needed to deal with the pose problem. Therefore it contains mainly basics of Euclidean, projective and conformal geometry. Since especially conformal geometry is not well known in computer science, we recapitulate the mathematical concepts in some detail. We believe that this geometric model is useful also for many other computer vision tasks and has been ignored so far. Applications of these foundations are presented in Part II.
KW - 2D-3D pose estimation
KW - Conformal Geometric algebra
KW - Stratification hierarchy
UR - http://www.scopus.com/inward/record.url?scp=17044434183&partnerID=8YFLogxK
U2 - 10.1007/s10851-005-4781-x
DO - 10.1007/s10851-005-4781-x
M3 - Article
AN - SCOPUS:17044434183
VL - 22
SP - 27
EP - 48
JO - Journal of Mathematical Imaging and Vision
JF - Journal of Mathematical Imaging and Vision
SN - 0924-9907
IS - 1
ER -