Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1257-1263 |
Seitenumfang | 7 |
Fachzeitschrift | CRYSTENGCOMM |
Jahrgang | 15 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 14 Feb. 2013 |
Extern publiziert | Ja |
Abstract
Porous tablets of crystalline calcium carbonate were formed upon sintering of a precursor powder of amorphous calcium carbonate (ACC) under compressive stress (20 MPa) at relatively low temperatures (120-400 °C), induced by pulsed direct currents. Infrared spectroscopy ascertained the amorphous nature of the precursor powders. At temperatures of 120-350 °C and rates of temperature increase of 20-100 °C min-1, the nanoparticles of ACC transformed into crystallites of mainly aragonite, which is generally difficult to achieve using wet-chemicals under kinetic control. The amorphous precursor particles (∼10 nm) transformed into crystallites (∼30-50 nm) during sintering. Consistently, the specific surface areas of 140-160 m2 g-1 for the precursor particles were reduced to 10-20 m2 g-1 for the porous tablets. The porous network within the tablets consisted of fused aragonite and vaterite particles in a ratio of ∼80:20. The fraction of aragonite to vaterite was invariant to the temperature and rate of temperature change used. The particle size increased only to a small amount on an increased rate of temperature change. At temperatures above 400 °C, porous tablets of calcite formed. The later transformation was under thermodynamic control, and led to a minor reduction of the specific surface area. The size of the crystallites remained small and the transformation to calcite appeared to be a solid-state transformation. Porous, template- and binder-free tablets of calcium carbonate could find applications in for example, biology or water treatment.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Allgemeine Chemie
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: CRYSTENGCOMM, Jahrgang 15, Nr. 6, 14.02.2013, S. 1257-1263.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Porous tablets of crystalline calcium carbonate via sintering of amorphous nanoparticles
AU - Gebauer, Denis
AU - Liu, Xingmin
AU - Aziz, Baroz
AU - Hedin, Niklas
AU - Zhao, Zhe
PY - 2013/2/14
Y1 - 2013/2/14
N2 - Porous tablets of crystalline calcium carbonate were formed upon sintering of a precursor powder of amorphous calcium carbonate (ACC) under compressive stress (20 MPa) at relatively low temperatures (120-400 °C), induced by pulsed direct currents. Infrared spectroscopy ascertained the amorphous nature of the precursor powders. At temperatures of 120-350 °C and rates of temperature increase of 20-100 °C min-1, the nanoparticles of ACC transformed into crystallites of mainly aragonite, which is generally difficult to achieve using wet-chemicals under kinetic control. The amorphous precursor particles (∼10 nm) transformed into crystallites (∼30-50 nm) during sintering. Consistently, the specific surface areas of 140-160 m2 g-1 for the precursor particles were reduced to 10-20 m2 g-1 for the porous tablets. The porous network within the tablets consisted of fused aragonite and vaterite particles in a ratio of ∼80:20. The fraction of aragonite to vaterite was invariant to the temperature and rate of temperature change used. The particle size increased only to a small amount on an increased rate of temperature change. At temperatures above 400 °C, porous tablets of calcite formed. The later transformation was under thermodynamic control, and led to a minor reduction of the specific surface area. The size of the crystallites remained small and the transformation to calcite appeared to be a solid-state transformation. Porous, template- and binder-free tablets of calcium carbonate could find applications in for example, biology or water treatment.
AB - Porous tablets of crystalline calcium carbonate were formed upon sintering of a precursor powder of amorphous calcium carbonate (ACC) under compressive stress (20 MPa) at relatively low temperatures (120-400 °C), induced by pulsed direct currents. Infrared spectroscopy ascertained the amorphous nature of the precursor powders. At temperatures of 120-350 °C and rates of temperature increase of 20-100 °C min-1, the nanoparticles of ACC transformed into crystallites of mainly aragonite, which is generally difficult to achieve using wet-chemicals under kinetic control. The amorphous precursor particles (∼10 nm) transformed into crystallites (∼30-50 nm) during sintering. Consistently, the specific surface areas of 140-160 m2 g-1 for the precursor particles were reduced to 10-20 m2 g-1 for the porous tablets. The porous network within the tablets consisted of fused aragonite and vaterite particles in a ratio of ∼80:20. The fraction of aragonite to vaterite was invariant to the temperature and rate of temperature change used. The particle size increased only to a small amount on an increased rate of temperature change. At temperatures above 400 °C, porous tablets of calcite formed. The later transformation was under thermodynamic control, and led to a minor reduction of the specific surface area. The size of the crystallites remained small and the transformation to calcite appeared to be a solid-state transformation. Porous, template- and binder-free tablets of calcium carbonate could find applications in for example, biology or water treatment.
UR - http://www.scopus.com/inward/record.url?scp=84872357086&partnerID=8YFLogxK
U2 - 10.1039/c2ce26604k
DO - 10.1039/c2ce26604k
M3 - Article
AN - SCOPUS:84872357086
VL - 15
SP - 1257
EP - 1263
JO - CRYSTENGCOMM
JF - CRYSTENGCOMM
SN - 1466-8033
IS - 6
ER -