Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • The LIGO Scientific Collaboration
  • Virgo Collaboration
  • Sukanta Bose
  • D. D. Brown
  • Y. B. Chen
  • Hai-Ping Cheng
  • Manuela Hanke
  • Hannah Hansen
  • J. Hennig
  • M. T. Hübner
  • R. N. Lang
  • H. M. Lee
  • H. W. Lee
  • J. Lee
  • K. Lee
  • X. Li
  • T. Nguyen
  • C. A. Rose
  • D. Rose
  • I. R. Sanders
  • Patricia Schmidt
  • L. Sun
  • A. T. Tran
  • L. V. White
  • D. S. Wu
  • L. Zhang
  • R. Zhang
  • X. J. Zhu
  • Fabio Bergamin
  • G. Bergmann
  • A. Bisht
  • Nina Bode
  • P. Booker
  • M. Brinkmann
  • M. Cabero
  • N. Gohlke
  • Timo Denker
  • J. Heinze
  • O. de Varona
  • M. H. Hennig
  • S. Hochheim
  • J. Junker
  • W. Kastaun
  • R. Kirchhoff
  • P. Koch
  • N. Koper
  • S. M. Köhlenbeck
  • V. Kringel
  • N. V. Krishnendu
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • J. Liu
  • J. D. Lough
  • Mariia Matuisheckina
  • M. Mehmet
  • Fabian Meylahn
  • N. Mukund
  • S. L. Nadji
  • M. Nery
  • F. Ohme
  • P. Oppermann
  • E. Schreiber
  • B. W. Schulte
  • Y. Setyawati
  • M. Steinke
  • J. Venneberg
  • M. Weinert
  • F. Wellmann
  • Peter Weßels
  • Maximilian H. Wimmer
  • W. Winkler
  • J. Woehler
  • J. von Wrangel
  • Peter Aufmuth
  • C. Krämer
  • Mariia Matiushechkina

Externe Organisationen

  • Australian National University
  • Maastricht University
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • University of Arizona
  • Washington State University Pullman
  • Inter-University Centre for Astronomy and Astrophysics India
  • University of Adelaide
  • University of Florida
  • Massachusetts Institute of Technology (MIT)
  • LIGO Laboratory
  • Monash University
  • Inje University
  • Stanford University
  • California Institute of Technology (Caltech)
  • California State University Fullerton
  • The California State University
  • Université de Lausanne (UNIL)
  • Radboud Universität Nijmegen (RU)
  • University of Melbourne
  • Bellevue College
  • Syracuse University
  • Fudan University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
AufsatznummerL7
Seitenumfang53
FachzeitschriftAstrophysical Journal Letters
Jahrgang913
Ausgabenummer1
Frühes Online-Datum19 Mai 2021
PublikationsstatusVeröffentlicht - 20 Mai 2021

Abstract

We report on the population of the 47 compact binary mergers detected with a false-alarm rate 1/yr in the second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, we find that the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; it is more consistent with a broken power law with a break at \(39.7^{+20.3}_{-9.1}\,M_\odot\), or a power law with a Gaussian feature peaking at \(33.1^{+4.0}_{-5.6}\,M_\odot\) (90\% credible interval). While the primary mass distribution must extend to \(\sim65\,M_\odot\) or beyond, only \(2.9^{+3.5}_{1.7}\%\) of systems have primary masses greater than \(45\,M_\odot\). Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, 12% to 44% of BBH systems have spins tilted by more than \(90^\circ\), giving rise to a negative effective inspiral spin parameter \(\chi_\mathrm{eff}\). Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBH with non-vanishing \(|\chi_\mathrm{eff}| > 0.01\) are dynamically assembled. Third, we estimate merger rates, finding \(\mathcal{R}_\text{BBH} = 23.9^{+14.3}_{8.6}\) Gpc\(^{-3}\) yr\(^{-1}\) for BBH and \(\mathcal{R}_\text{BNS}= 320^{+490}_{-240}\) Gpc\(^{-3}\) yr\(^{-1}\) for binary neutron stars. We find that the BBH rate likely increases with redshift (\(85\%\) credibility), but not faster than the star-formation rate (\(86\%\) credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

ASJC Scopus Sachgebiete

Zitieren

Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. / The LIGO Scientific Collaboration; Virgo Collaboration; Bose, Sukanta et al.
in: Astrophysical Journal Letters, Jahrgang 913, Nr. 1, L7, 20.05.2021.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

The LIGO Scientific Collaboration, Virgo Collaboration, Bose, S, Brown, DD, Chen, YB, Cheng, H-P, Hanke, M, Hansen, H, Hennig, J, Hübner, MT, Lang, RN, Lee, HM, Lee, HW, Lee, J, Lee, K, Li, X, Nguyen, T, Rose, CA, Rose, D, Sanders, IR, Schmidt, P, Sun, L, Tran, AT, White, LV, Wu, DS, Zhang, L, Zhang, R, Zhu, XJ, Bergamin, F, Bergmann, G, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Cabero, M, Gohlke, N, Denker, T, Heinze, J, de Varona, O, Hennig, MH, Hochheim, S, Junker, J, Kastaun, W, Kirchhoff, R, Koch, P, Koper, N, Köhlenbeck, SM, Kringel, V, Krishnendu, NV, Kuehn, G, Leavey, S, Lehmann, J, Liu, J, Lough, JD, Matuisheckina, M, Mehmet, M, Meylahn, F, Mukund, N, Nadji, SL, Nery, M, Ohme, F, Oppermann, P, Schreiber, E, Schulte, BW, Setyawati, Y, Steinke, M, Venneberg, J, Weinert, M, Wellmann, F, Weßels, P, Wimmer, MH, Winkler, W, Woehler, J, von Wrangel, J, Aufmuth, P, Krämer, C & Matiushechkina, M 2021, 'Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog', Astrophysical Journal Letters, Jg. 913, Nr. 1, L7. https://doi.org/10.3847/2041-8213/abe949, https://doi.org/10.15488/11387
The LIGO Scientific Collaboration, Virgo Collaboration, Bose, S., Brown, D. D., Chen, Y. B., Cheng, H.-P., Hanke, M., Hansen, H., Hennig, J., Hübner, M. T., Lang, R. N., Lee, H. M., Lee, H. W., Lee, J., Lee, K., Li, X., Nguyen, T., Rose, C. A., Rose, D., ... Matiushechkina, M. (2021). Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 913(1), Artikel L7. https://doi.org/10.3847/2041-8213/abe949, https://doi.org/10.15488/11387
The LIGO Scientific Collaboration, Virgo Collaboration, Bose S, Brown DD, Chen YB, Cheng HP et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters. 2021 Mai 20;913(1):L7. Epub 2021 Mai 19. doi: 10.3847/2041-8213/abe949, 10.15488/11387
The LIGO Scientific Collaboration ; Virgo Collaboration ; Bose, Sukanta et al. / Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. in: Astrophysical Journal Letters. 2021 ; Jahrgang 913, Nr. 1.
Download
@article{0a8348a590094fdf821bab814fb366dd,
title = "Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog",
abstract = " We report on the population of the 47 compact binary mergers detected with a false-alarm rate 1/yr in the second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, we find that the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; it is more consistent with a broken power law with a break at \(39.7^{+20.3}_{-9.1}\,M_\odot\), or a power law with a Gaussian feature peaking at \(33.1^{+4.0}_{-5.6}\,M_\odot\) (90\% credible interval). While the primary mass distribution must extend to \(\sim65\,M_\odot\) or beyond, only \(2.9^{+3.5}_{1.7}\%\) of systems have primary masses greater than \(45\,M_\odot\). Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, 12% to 44% of BBH systems have spins tilted by more than \(90^\circ\), giving rise to a negative effective inspiral spin parameter \(\chi_\mathrm{eff}\). Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBH with non-vanishing \(|\chi_\mathrm{eff}| > 0.01\) are dynamically assembled. Third, we estimate merger rates, finding \(\mathcal{R}_\text{BBH} = 23.9^{+14.3}_{8.6}\) Gpc\(^{-3}\) yr\(^{-1}\) for BBH and \(\mathcal{R}_\text{BNS}= 320^{+490}_{-240}\) Gpc\(^{-3}\) yr\(^{-1}\) for binary neutron stars. We find that the BBH rate likely increases with redshift (\(85\%\) credibility), but not faster than the star-formation rate (\(86\%\) credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier. ",
keywords = "astro-ph.HE, gr-qc",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and R. Abbott and Abbott, {T. D.} and S. Abraham and F. Acernese and K. Ackley and A. Adams and C. Adams and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and G. Allen and A. Allocca and Altin, {P. A.} and A. Amato and S. Anand and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and Angelova, {S. V.} and S. Ansoldi and Antelis, {J. M.} and S. Antier and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and M. Ar{\`e}ne and N. Arnaud and Aronson, {S. M.} and Arun, {K. G.} and Y. Asali and S. Ascenzi and G. Ashton and Danilishin, {S. L.} and K. Danzmann and M. Heurs and H. L{\"u}ck and L. Richardson and D. Steinmeyer and H. Vahlbruch and L. Wei and Wilken, {D. M.} and B. Willke and Sukanta Bose and Brown, {D. D.} and Chen, {Y. B.} and Hai-Ping Cheng and Manuela Hanke and Hannah Hansen and J. Hennig and H{\"u}bner, {M. T.} and Lang, {R. N.} and Lee, {H. M.} and Lee, {H. W.} and J. Lee and K. Lee and X. Li and T. Nguyen and Rose, {C. A.} and D. Rose and Sanders, {I. R.} and Patricia Schmidt and L. Sun and Tran, {A. T.} and White, {L. V.} and Wu, {D. S.} and L. Zhang and R. Zhang and Zhu, {X. J.} and Fabio Bergamin and G. Bergmann and A. Bisht and Nina Bode and P. Booker and M. Brinkmann and M. Cabero and N. Gohlke and Timo Denker and J. Heinze and {de Varona}, O. and Hennig, {M. H.} and S. Hochheim and J. Junker and W. Kastaun and R. Kirchhoff and P. Koch and N. Koper and K{\"o}hlenbeck, {S. M.} and V. Kringel and Krishnendu, {N. V.} and G. Kuehn and S. Leavey and J. Lehmann and J. Liu and Lough, {J. D.} and Mariia Matuisheckina and M. Mehmet and Fabian Meylahn and N. Mukund and Nadji, {S. L.} and M. Nery and F. Ohme and P. Oppermann and E. Schreiber and Schulte, {B. W.} and Y. Setyawati and M. Steinke and J. Venneberg and M. Weinert and F. Wellmann and Peter We{\ss}els and Wimmer, {Maximilian H.} and W. Winkler and J. Woehler and {von Wrangel}, J. and Peter Aufmuth and C. Kr{\"a}mer and Mariia Matiushechkina",
year = "2021",
month = may,
day = "20",
doi = "10.3847/2041-8213/abe949",
language = "English",
volume = "913",
journal = "Astrophysical Journal Letters",
issn = "2041-8205",
publisher = "IOP Publishing Ltd.",
number = "1",

}

Download

TY - JOUR

T1 - Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abraham, S.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, A.

AU - Adams, C.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, G.

AU - Allocca, A.

AU - Altin, P. A.

AU - Amato, A.

AU - Anand, S.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Ansoldi, S.

AU - Antelis, J. M.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Aronson, S. M.

AU - Arun, K. G.

AU - Asali, Y.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Danilishin, S. L.

AU - Danzmann, K.

AU - Heurs, M.

AU - Lück, H.

AU - Richardson, L.

AU - Steinmeyer, D.

AU - Vahlbruch, H.

AU - Wei, L.

AU - Wilken, D. M.

AU - Willke, B.

AU - Bose, Sukanta

AU - Brown, D. D.

AU - Chen, Y. B.

AU - Cheng, Hai-Ping

AU - Hanke, Manuela

AU - Hansen, Hannah

AU - Hennig, J.

AU - Hübner, M. T.

AU - Lang, R. N.

AU - Lee, H. M.

AU - Lee, H. W.

AU - Lee, J.

AU - Lee, K.

AU - Li, X.

AU - Nguyen, T.

AU - Rose, C. A.

AU - Rose, D.

AU - Sanders, I. R.

AU - Schmidt, Patricia

AU - Sun, L.

AU - Tran, A. T.

AU - White, L. V.

AU - Wu, D. S.

AU - Zhang, L.

AU - Zhang, R.

AU - Zhu, X. J.

AU - Bergamin, Fabio

AU - Bergmann, G.

AU - Bisht, A.

AU - Bode, Nina

AU - Booker, P.

AU - Brinkmann, M.

AU - Cabero, M.

AU - Gohlke, N.

AU - Denker, Timo

AU - Heinze, J.

AU - de Varona, O.

AU - Hennig, M. H.

AU - Hochheim, S.

AU - Junker, J.

AU - Kastaun, W.

AU - Kirchhoff, R.

AU - Koch, P.

AU - Koper, N.

AU - Köhlenbeck, S. M.

AU - Kringel, V.

AU - Krishnendu, N. V.

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Liu, J.

AU - Lough, J. D.

AU - Matuisheckina, Mariia

AU - Mehmet, M.

AU - Meylahn, Fabian

AU - Mukund, N.

AU - Nadji, S. L.

AU - Nery, M.

AU - Ohme, F.

AU - Oppermann, P.

AU - Schreiber, E.

AU - Schulte, B. W.

AU - Setyawati, Y.

AU - Steinke, M.

AU - Venneberg, J.

AU - Weinert, M.

AU - Wellmann, F.

AU - Weßels, Peter

AU - Wimmer, Maximilian H.

AU - Winkler, W.

AU - Woehler, J.

AU - von Wrangel, J.

AU - Aufmuth, Peter

AU - Krämer, C.

AU - Matiushechkina, Mariia

PY - 2021/5/20

Y1 - 2021/5/20

N2 - We report on the population of the 47 compact binary mergers detected with a false-alarm rate 1/yr in the second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, we find that the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; it is more consistent with a broken power law with a break at \(39.7^{+20.3}_{-9.1}\,M_\odot\), or a power law with a Gaussian feature peaking at \(33.1^{+4.0}_{-5.6}\,M_\odot\) (90\% credible interval). While the primary mass distribution must extend to \(\sim65\,M_\odot\) or beyond, only \(2.9^{+3.5}_{1.7}\%\) of systems have primary masses greater than \(45\,M_\odot\). Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, 12% to 44% of BBH systems have spins tilted by more than \(90^\circ\), giving rise to a negative effective inspiral spin parameter \(\chi_\mathrm{eff}\). Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBH with non-vanishing \(|\chi_\mathrm{eff}| > 0.01\) are dynamically assembled. Third, we estimate merger rates, finding \(\mathcal{R}_\text{BBH} = 23.9^{+14.3}_{8.6}\) Gpc\(^{-3}\) yr\(^{-1}\) for BBH and \(\mathcal{R}_\text{BNS}= 320^{+490}_{-240}\) Gpc\(^{-3}\) yr\(^{-1}\) for binary neutron stars. We find that the BBH rate likely increases with redshift (\(85\%\) credibility), but not faster than the star-formation rate (\(86\%\) credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

AB - We report on the population of the 47 compact binary mergers detected with a false-alarm rate 1/yr in the second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, we find that the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; it is more consistent with a broken power law with a break at \(39.7^{+20.3}_{-9.1}\,M_\odot\), or a power law with a Gaussian feature peaking at \(33.1^{+4.0}_{-5.6}\,M_\odot\) (90\% credible interval). While the primary mass distribution must extend to \(\sim65\,M_\odot\) or beyond, only \(2.9^{+3.5}_{1.7}\%\) of systems have primary masses greater than \(45\,M_\odot\). Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, 12% to 44% of BBH systems have spins tilted by more than \(90^\circ\), giving rise to a negative effective inspiral spin parameter \(\chi_\mathrm{eff}\). Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBH with non-vanishing \(|\chi_\mathrm{eff}| > 0.01\) are dynamically assembled. Third, we estimate merger rates, finding \(\mathcal{R}_\text{BBH} = 23.9^{+14.3}_{8.6}\) Gpc\(^{-3}\) yr\(^{-1}\) for BBH and \(\mathcal{R}_\text{BNS}= 320^{+490}_{-240}\) Gpc\(^{-3}\) yr\(^{-1}\) for binary neutron stars. We find that the BBH rate likely increases with redshift (\(85\%\) credibility), but not faster than the star-formation rate (\(86\%\) credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

KW - astro-ph.HE

KW - gr-qc

UR - http://www.scopus.com/inward/record.url?scp=85107556742&partnerID=8YFLogxK

U2 - 10.3847/2041-8213/abe949

DO - 10.3847/2041-8213/abe949

M3 - Article

VL - 913

JO - Astrophysical Journal Letters

JF - Astrophysical Journal Letters

SN - 2041-8205

IS - 1

M1 - L7

ER -

Von denselben Autoren