Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 011048 |
Fachzeitschrift | Physical Review X |
Jahrgang | 13 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 29 März 2023 |
Abstract
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review X, Jahrgang 13, Nr. 1, 011048, 29.03.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Population of merging compact binaries inferred using gravitational waves through GWTC-3
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - the KAGRA Collaboration
AU - Abbott, R.
AU - Abbott, T. D.
AU - Acernese, F.
AU - Adya, V. B.
AU - Bose, S.
AU - Brown, D. D.
AU - Chatterjee, C.
AU - Chen, X.
AU - Chen, Y.-B.
AU - Chen, Y.-R.
AU - Cheng, H.
AU - Choudhary, R. K.
AU - Danilishin, S.
AU - Danzmann, K.
AU - Guo, H. -K.
AU - Hansen, H.
AU - Hennig, J.
AU - Heurs, M.
AU - Hreibi, A.
AU - Hübner, M. T.
AU - Isleif, K.
AU - Lang, R. N.
AU - Lee, H. K.
AU - Lee, H. M.
AU - Lee, H. W.
AU - Lee, J.
AU - Lehmann, J.
AU - Li, J.
AU - Li, X.
AU - Lück, H.
AU - More, A.
AU - Nguyen, T.
AU - Richardson, L.
AU - Rose, C. A.
AU - Roy, S.
AU - Sanders, J. R.
AU - Schmidt, P.
AU - Schmidt, S.
AU - Sun, L.
AU - Vahlbruch, H.
AU - Wilken, D.
AU - Willke, B.
AU - Wu, D. S.
AU - Wu, H.
AU - Yamamoto, Kohei
AU - Zhang, H.
AU - Zhang, L.
AU - Zhang, Y.
AU - Zhou, Z.
AU - Zhu, X. J.
AU - Affeldt, C.
AU - Bergamin, F.
AU - Bisht, A.
AU - Bode, N.
AU - Booker, P.
AU - Brinkmann, M.
AU - Gohlke, N.
AU - Heidt, A.
AU - Heinze, J.
AU - Hochheim, S.
AU - Kastaun, W.
AU - Kirchhoff, R.
AU - Koch, P.
AU - Koper, N.
AU - Kringel, V.
AU - Krishnendu, N. V.
AU - Kuehn, G.
AU - Leavey, S.
AU - Liu, J.
AU - Lough, J. D.
AU - Matiushechkina, M.
AU - Mehmet, M.
AU - Meylahn, F.
AU - Mukund, N.
AU - Nadji, S. L.
AU - Nery, M.
AU - Ohme, F.
AU - Schneewind, M.
AU - Schulte, B. W.
AU - Schutz, B. F.
AU - Venneberg, J.
AU - von Wrangel, J.
AU - Weinert, M.
AU - Wellmann, F.
AU - Weßels, P.
AU - Winkler, W.
AU - Woehler, J.
AU - Junker, Jochen
N1 - This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board, India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union—European Regional Development Fund; Foundation for Polish Science, the Swiss National Science Foundation, the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds, the European Regional Development Funds, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund, the French Lyon Institute of Origins, the Belgian Fonds de la Recherche Scientifique, Actions de Recherche Concertées and Fonds Wetenschappelijk Onderzoek—Vlaanderen, Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary, the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation, the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research, the Research Grants Council of Hong Kong, the National Natural Science Foundation of China, the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology, Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-Edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research, Grant No. 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905, Grants No. JP17H06358, No. JP17H06361, and No. JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S), Grants No. 17H06133 and No. 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203, Grant No. JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center and the Ministry of Science and Technology in Taiwan under grants including Grant No. AS-CDA-105-M06, Advanced Technology Center of NAOJ, Mechanical Engineering Center of KEK.
PY - 2023/3/29
Y1 - 2023/3/29
N2 - We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 13 \(\rm{Gpc^{-3} yr^{-1}}\) and 1900 \(\rm{Gpc^{-3} yr^{-1}}\) and the NSBH merger rate to be between 7.4 \(\rm{Gpc^{-3}\, yr^{-1}}\) and 320 \(\rm{Gpc^{-3} yr^{-1}}\) , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.3 \(\rm{Gpc^{-3}\, yr^{-1}}\) and 45 \(\rm{Gpc^{-3}\, yr^{-1}}\) at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from \(1.2^{+0.1}_{-0.2} M_\odot\) to \(2.0^{+0.3}_{-0.2} M_\odot\). We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 \(M_\odot\). We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above \(\sim 60 M_\odot\). The rate of BBH mergers is observed to increase with redshift at a rate proportional to \((1+z)^{\kappa}\) with \(\kappa = 2.7^{+1.8}_{-1.9}\) for \(z\lesssim 1\). Observed black hole spins are small, with half of spin magnitudes below \(\chi_i \simeq 0.26\). We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio.
AB - We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 13 \(\rm{Gpc^{-3} yr^{-1}}\) and 1900 \(\rm{Gpc^{-3} yr^{-1}}\) and the NSBH merger rate to be between 7.4 \(\rm{Gpc^{-3}\, yr^{-1}}\) and 320 \(\rm{Gpc^{-3} yr^{-1}}\) , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.3 \(\rm{Gpc^{-3}\, yr^{-1}}\) and 45 \(\rm{Gpc^{-3}\, yr^{-1}}\) at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from \(1.2^{+0.1}_{-0.2} M_\odot\) to \(2.0^{+0.3}_{-0.2} M_\odot\). We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 \(M_\odot\). We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above \(\sim 60 M_\odot\). The rate of BBH mergers is observed to increase with redshift at a rate proportional to \((1+z)^{\kappa}\) with \(\kappa = 2.7^{+1.8}_{-1.9}\) for \(z\lesssim 1\). Observed black hole spins are small, with half of spin magnitudes below \(\chi_i \simeq 0.26\). We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio.
KW - astro-ph.HE
KW - gr-qc
UR - http://www.scopus.com/inward/record.url?scp=85151382852&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2111.03634
DO - 10.48550/arXiv.2111.03634
M3 - Article
VL - 13
JO - Physical Review X
JF - Physical Review X
SN - 2160-3308
IS - 1
M1 - 011048
ER -