Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 265302 |
Fachzeitschrift | NANOTECHNOLOGY |
Jahrgang | 25 |
Ausgabenummer | 26 |
Publikationsstatus | Veröffentlicht - 11 Juni 2014 |
Extern publiziert | Ja |
Abstract
Sub-100 nm antenna arrays consisting of a star-like ridge or dome-like structures with needles in their centers are prepared in thin gold films on glass substrates using femtosecond laser pulses. The needles can be bent mechanically to be horizontally aligned to the substrate surface. Controlled variation of the pulse energy allows one to obtain nanostructures of different defined morphologies. These arrays of nanostructures are covered with a thin homogeneous layer of rhodamine molecules. Raman spectra using linearly polarized laser light of 632.8 nm are taken with the laser spot centered on individual nanostructures and at positions on the unstructured film. The average Raman enhancement within the laser spot focused onto a nanostructure is two orders of magnitude higher than on the unstructured film. The nanostructures with bent needles exhibit a polarization dependence of the SERS effect, i.e., typically the enhancement is larger by about a factor of two for excitation light polarized parallel to the needle direction than for the perpendicular case. The enhancement factor of the star-like ridge structures with needles is analyzed by the finite-element method, which agrees with the experiment. We show that the variation of the SERS activity of almost similar structures arises from the inherent randomness of the hot spots created in the fabrication process. Nevertheless, these antenna structures may be useful as elements in novel SERS devices as they can be accurately positioned on a device using a cheap fabrication process compatible with microfabrication technology.
ASJC Scopus Sachgebiete
- Chemische Verfahrenstechnik (insg.)
- Bioengineering
- Chemie (insg.)
- Allgemeine Chemie
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: NANOTECHNOLOGY, Jahrgang 25, Nr. 26, 265302, 11.06.2014.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Polarization-dependent SERS effects of laser-generated sub-100 nm antenna structures
AU - Chen, Limei
AU - Zhai, Tianrui
AU - Zhang, Xinping
AU - Unger, Claudia
AU - Koch, Jürgen
AU - Chichkov, Boris N.
AU - Klar, Peter J.
PY - 2014/6/11
Y1 - 2014/6/11
N2 - Sub-100 nm antenna arrays consisting of a star-like ridge or dome-like structures with needles in their centers are prepared in thin gold films on glass substrates using femtosecond laser pulses. The needles can be bent mechanically to be horizontally aligned to the substrate surface. Controlled variation of the pulse energy allows one to obtain nanostructures of different defined morphologies. These arrays of nanostructures are covered with a thin homogeneous layer of rhodamine molecules. Raman spectra using linearly polarized laser light of 632.8 nm are taken with the laser spot centered on individual nanostructures and at positions on the unstructured film. The average Raman enhancement within the laser spot focused onto a nanostructure is two orders of magnitude higher than on the unstructured film. The nanostructures with bent needles exhibit a polarization dependence of the SERS effect, i.e., typically the enhancement is larger by about a factor of two for excitation light polarized parallel to the needle direction than for the perpendicular case. The enhancement factor of the star-like ridge structures with needles is analyzed by the finite-element method, which agrees with the experiment. We show that the variation of the SERS activity of almost similar structures arises from the inherent randomness of the hot spots created in the fabrication process. Nevertheless, these antenna structures may be useful as elements in novel SERS devices as they can be accurately positioned on a device using a cheap fabrication process compatible with microfabrication technology.
AB - Sub-100 nm antenna arrays consisting of a star-like ridge or dome-like structures with needles in their centers are prepared in thin gold films on glass substrates using femtosecond laser pulses. The needles can be bent mechanically to be horizontally aligned to the substrate surface. Controlled variation of the pulse energy allows one to obtain nanostructures of different defined morphologies. These arrays of nanostructures are covered with a thin homogeneous layer of rhodamine molecules. Raman spectra using linearly polarized laser light of 632.8 nm are taken with the laser spot centered on individual nanostructures and at positions on the unstructured film. The average Raman enhancement within the laser spot focused onto a nanostructure is two orders of magnitude higher than on the unstructured film. The nanostructures with bent needles exhibit a polarization dependence of the SERS effect, i.e., typically the enhancement is larger by about a factor of two for excitation light polarized parallel to the needle direction than for the perpendicular case. The enhancement factor of the star-like ridge structures with needles is analyzed by the finite-element method, which agrees with the experiment. We show that the variation of the SERS activity of almost similar structures arises from the inherent randomness of the hot spots created in the fabrication process. Nevertheless, these antenna structures may be useful as elements in novel SERS devices as they can be accurately positioned on a device using a cheap fabrication process compatible with microfabrication technology.
KW - antenna arrays
KW - polarization dependence
KW - SERS effects
UR - http://www.scopus.com/inward/record.url?scp=84902440388&partnerID=8YFLogxK
U2 - 10.1088/0957-4484/25/26/265302
DO - 10.1088/0957-4484/25/26/265302
M3 - Article
AN - SCOPUS:84902440388
VL - 25
JO - NANOTECHNOLOGY
JF - NANOTECHNOLOGY
SN - 0957-4484
IS - 26
M1 - 265302
ER -