Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 455-469 |
Seitenumfang | 15 |
Fachzeitschrift | Solar Energy |
Jahrgang | 56 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - Mai 1996 |
Extern publiziert | Ja |
Abstract
Two different photocatalysts, namely Hombikat UV100 (Sachtleben Chemie) and P25 (Degussa) have been used in batch experiments to compare their ability to degrade the toxic components of a biologically pretreated landfill leachate. A strong adsorption of the pollutant molecules was observed for both TiO2-powders, with a maximum of almost 70% TOC reduction for Hombikat UV100, making it almost impossible to draw a quantitative comparison of the degradation with the two catalysts in the batch system. The photocalytic activity of Hombikat UV100 was also tested using a thin-film fixed-bed reactor (TFFBR) configuration under artificial solar UV-irradiation. Here the catalyst was fixed onto a glass-plate to avoid separation of the catalyst and water after the treatment. The highest degradation rate was observed at pH 5, using a moderately diluted waste water. In good agreement with the degradation rate's pH dependency adsorption measurements showed a maximum adsorption of the organic pollutants onto Hombikat UV 100 TiO2 at pH 5. Photonic efficiencies (ζ) based on the amount of incident irradiation have been calculated for the experiments, ζ could be increased by a reduction of the light intensity. While the addition of H2O2 had an inhibiting effect (at pH 7), the presence of Na2S2O8 led to a dark reaction. Studies performed under continuous recirculating conditions showed that even undiluted waste-water streams can, in principle, be degraded completely.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Solar Energy, Jahrgang 56, Nr. 5, 05.1996, S. 455-469.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Photocatalytic detoxification with the thin-film fixed-bed reactor (TFFBR)
T2 - Clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst
AU - Bekbölet, M.
AU - Lindner, M.
AU - Weichgrebe, D.
AU - Bahnemann, D. W.
N1 - Funding information: Dr M. Bekb61et wishes to express her thanks to the Institut fiir Solarenergieforschung GmbH Hannover, Germany, where this study was performed and to the Research Fund of Bogaziqi University.
PY - 1996/5
Y1 - 1996/5
N2 - Two different photocatalysts, namely Hombikat UV100 (Sachtleben Chemie) and P25 (Degussa) have been used in batch experiments to compare their ability to degrade the toxic components of a biologically pretreated landfill leachate. A strong adsorption of the pollutant molecules was observed for both TiO2-powders, with a maximum of almost 70% TOC reduction for Hombikat UV100, making it almost impossible to draw a quantitative comparison of the degradation with the two catalysts in the batch system. The photocalytic activity of Hombikat UV100 was also tested using a thin-film fixed-bed reactor (TFFBR) configuration under artificial solar UV-irradiation. Here the catalyst was fixed onto a glass-plate to avoid separation of the catalyst and water after the treatment. The highest degradation rate was observed at pH 5, using a moderately diluted waste water. In good agreement with the degradation rate's pH dependency adsorption measurements showed a maximum adsorption of the organic pollutants onto Hombikat UV 100 TiO2 at pH 5. Photonic efficiencies (ζ) based on the amount of incident irradiation have been calculated for the experiments, ζ could be increased by a reduction of the light intensity. While the addition of H2O2 had an inhibiting effect (at pH 7), the presence of Na2S2O8 led to a dark reaction. Studies performed under continuous recirculating conditions showed that even undiluted waste-water streams can, in principle, be degraded completely.
AB - Two different photocatalysts, namely Hombikat UV100 (Sachtleben Chemie) and P25 (Degussa) have been used in batch experiments to compare their ability to degrade the toxic components of a biologically pretreated landfill leachate. A strong adsorption of the pollutant molecules was observed for both TiO2-powders, with a maximum of almost 70% TOC reduction for Hombikat UV100, making it almost impossible to draw a quantitative comparison of the degradation with the two catalysts in the batch system. The photocalytic activity of Hombikat UV100 was also tested using a thin-film fixed-bed reactor (TFFBR) configuration under artificial solar UV-irradiation. Here the catalyst was fixed onto a glass-plate to avoid separation of the catalyst and water after the treatment. The highest degradation rate was observed at pH 5, using a moderately diluted waste water. In good agreement with the degradation rate's pH dependency adsorption measurements showed a maximum adsorption of the organic pollutants onto Hombikat UV 100 TiO2 at pH 5. Photonic efficiencies (ζ) based on the amount of incident irradiation have been calculated for the experiments, ζ could be increased by a reduction of the light intensity. While the addition of H2O2 had an inhibiting effect (at pH 7), the presence of Na2S2O8 led to a dark reaction. Studies performed under continuous recirculating conditions showed that even undiluted waste-water streams can, in principle, be degraded completely.
UR - http://www.scopus.com/inward/record.url?scp=0030137923&partnerID=8YFLogxK
U2 - 10.1016/0038-092X(96)00020-5
DO - 10.1016/0038-092X(96)00020-5
M3 - Article
AN - SCOPUS:0030137923
VL - 56
SP - 455
EP - 469
JO - Solar Energy
JF - Solar Energy
SN - 0038-092X
IS - 5
ER -