Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 463-480 |
Seitenumfang | 18 |
Fachzeitschrift | Advances in applied probability |
Jahrgang | 28 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Juni 1996 |
Abstract
We investigate the behaviour of P(R ≧ r) and P(R ≦ -r) as r → ∞ for the random variable R:= Σ∞n=1 Qn Πn-1k=1 Mk, where ((Qk, Mk))k∈N is an independent, identically distributed sequence with P(-1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Statistik und Wahrscheinlichkeit
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Advances in applied probability, Jahrgang 28, Nr. 2, 06.1996, S. 463-480.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Perpetuities with thin tails
AU - Goldie, Charles M.
AU - Grübel, Rudolf
PY - 1996/6
Y1 - 1996/6
N2 - We investigate the behaviour of P(R ≧ r) and P(R ≦ -r) as r → ∞ for the random variable R:= Σ∞n=1 Qn Πn-1k=1 Mk, where ((Qk, Mk))k∈N is an independent, identically distributed sequence with P(-1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.
AB - We investigate the behaviour of P(R ≧ r) and P(R ≦ -r) as r → ∞ for the random variable R:= Σ∞n=1 Qn Πn-1k=1 Mk, where ((Qk, Mk))k∈N is an independent, identically distributed sequence with P(-1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.
KW - Perpetuity
KW - Random affine map
KW - Selection algorithm
KW - Stochastic difference equation
KW - Stochastic discounting
KW - Tail behaviour
UR - http://www.scopus.com/inward/record.url?scp=0000109458&partnerID=8YFLogxK
U2 - 10.1017/S0001867800048576
DO - 10.1017/S0001867800048576
M3 - Article
AN - SCOPUS:0000109458
VL - 28
SP - 463
EP - 480
JO - Advances in applied probability
JF - Advances in applied probability
SN - 0001-8678
IS - 2
ER -