Perpetuities with thin tails

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Charles M. Goldie
  • Rudolf Grübel

Externe Organisationen

  • Queen Mary University of London
  • University of Sussex
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)463-480
Seitenumfang18
FachzeitschriftAdvances in applied probability
Jahrgang28
Ausgabenummer2
PublikationsstatusVeröffentlicht - Juni 1996

Abstract

We investigate the behaviour of P(R ≧ r) and P(R ≦ -r) as r → ∞ for the random variable R:= Σn=1 Qn Πn-1k=1 Mk, where ((Qk, Mk))k∈N is an independent, identically distributed sequence with P(-1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.

ASJC Scopus Sachgebiete

Zitieren

Perpetuities with thin tails. / Goldie, Charles M.; Grübel, Rudolf.
in: Advances in applied probability, Jahrgang 28, Nr. 2, 06.1996, S. 463-480.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Goldie CM, Grübel R. Perpetuities with thin tails. Advances in applied probability. 1996 Jun;28(2):463-480. doi: 10.1017/S0001867800048576
Goldie, Charles M. ; Grübel, Rudolf. / Perpetuities with thin tails. in: Advances in applied probability. 1996 ; Jahrgang 28, Nr. 2. S. 463-480.
Download
@article{67a76f14f3c94e04b9baa859425f744b,
title = "Perpetuities with thin tails",
abstract = "We investigate the behaviour of P(R ≧ r) and P(R ≦ -r) as r → ∞ for the random variable R:= Σ∞n=1 Qn Πn-1k=1 Mk, where ((Qk, Mk))k∈N is an independent, identically distributed sequence with P(-1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.",
keywords = "Perpetuity, Random affine map, Selection algorithm, Stochastic difference equation, Stochastic discounting, Tail behaviour",
author = "Goldie, {Charles M.} and Rudolf Gr{\"u}bel",
year = "1996",
month = jun,
doi = "10.1017/S0001867800048576",
language = "English",
volume = "28",
pages = "463--480",
journal = "Advances in applied probability",
issn = "0001-8678",
publisher = "Cambridge University Press",
number = "2",

}

Download

TY - JOUR

T1 - Perpetuities with thin tails

AU - Goldie, Charles M.

AU - Grübel, Rudolf

PY - 1996/6

Y1 - 1996/6

N2 - We investigate the behaviour of P(R ≧ r) and P(R ≦ -r) as r → ∞ for the random variable R:= Σ∞n=1 Qn Πn-1k=1 Mk, where ((Qk, Mk))k∈N is an independent, identically distributed sequence with P(-1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.

AB - We investigate the behaviour of P(R ≧ r) and P(R ≦ -r) as r → ∞ for the random variable R:= Σ∞n=1 Qn Πn-1k=1 Mk, where ((Qk, Mk))k∈N is an independent, identically distributed sequence with P(-1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.

KW - Perpetuity

KW - Random affine map

KW - Selection algorithm

KW - Stochastic difference equation

KW - Stochastic discounting

KW - Tail behaviour

UR - http://www.scopus.com/inward/record.url?scp=0000109458&partnerID=8YFLogxK

U2 - 10.1017/S0001867800048576

DO - 10.1017/S0001867800048576

M3 - Article

AN - SCOPUS:0000109458

VL - 28

SP - 463

EP - 480

JO - Advances in applied probability

JF - Advances in applied probability

SN - 0001-8678

IS - 2

ER -