Perfect tangles

Publikation: Arbeitspapier/PreprintPreprint

Autoren

  • Johannes Berger
  • Tobias J. Osborne

Organisationseinheiten

Externe Organisationen

  • Universität Hamburg
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 9 Apr. 2018

Abstract

We introduce perfect tangles for modular tensor categories. These are intended to generalise the perfect tensors first introduced in the context of a toy model for the AdS/CFT correspondence. We construct perfect tangles for several categories of relevance for topological quantum computation, including the Temperley-Lieb, Fibonacci, Kuperberg spider, and Haagerup planar algebras. A general inductive construction proposed by Vaughan Jones for perfect tangles is also described.

Zitieren

Perfect tangles. / Berger, Johannes; Osborne, Tobias J.
2018.

Publikation: Arbeitspapier/PreprintPreprint

Berger, J & Osborne, TJ 2018 'Perfect tangles'. <http://arxiv.org/abs/1804.03199v1>
Berger, J., & Osborne, T. J. (2018). Perfect tangles. Vorabveröffentlichung online. http://arxiv.org/abs/1804.03199v1
Berger J, Osborne TJ. Perfect tangles. 2018 Apr 9. Epub 2018 Apr 9.
Berger, Johannes ; Osborne, Tobias J. / Perfect tangles. 2018.
Download
@techreport{52f493fb3fb449f9a9e62377450fe229,
title = "Perfect tangles",
abstract = "We introduce perfect tangles for modular tensor categories. These are intended to generalise the perfect tensors first introduced in the context of a toy model for the AdS/CFT correspondence. We construct perfect tangles for several categories of relevance for topological quantum computation, including the Temperley-Lieb, Fibonacci, Kuperberg spider, and Haagerup planar algebras. A general inductive construction proposed by Vaughan Jones for perfect tangles is also described. ",
keywords = "quant-ph",
author = "Johannes Berger and Osborne, {Tobias J.}",
note = "5 + 19 pages",
year = "2018",
month = apr,
day = "9",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Perfect tangles

AU - Berger, Johannes

AU - Osborne, Tobias J.

N1 - 5 + 19 pages

PY - 2018/4/9

Y1 - 2018/4/9

N2 - We introduce perfect tangles for modular tensor categories. These are intended to generalise the perfect tensors first introduced in the context of a toy model for the AdS/CFT correspondence. We construct perfect tangles for several categories of relevance for topological quantum computation, including the Temperley-Lieb, Fibonacci, Kuperberg spider, and Haagerup planar algebras. A general inductive construction proposed by Vaughan Jones for perfect tangles is also described.

AB - We introduce perfect tangles for modular tensor categories. These are intended to generalise the perfect tensors first introduced in the context of a toy model for the AdS/CFT correspondence. We construct perfect tangles for several categories of relevance for topological quantum computation, including the Temperley-Lieb, Fibonacci, Kuperberg spider, and Haagerup planar algebras. A general inductive construction proposed by Vaughan Jones for perfect tangles is also described.

KW - quant-ph

M3 - Preprint

BT - Perfect tangles

ER -