Partition congruences by involutions

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Christine Bessenrodt
  • Igor Pak

Externe Organisationen

  • Massachusetts Institute of Technology (MIT)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1139-1149
Seitenumfang11
FachzeitschriftEuropean journal of combinatorics
Jahrgang25
Ausgabenummer8
Frühes Online-Datum16 Jan. 2004
PublikationsstatusVeröffentlicht - Nov. 2004

Abstract

We present a general construction of involutions on integer partitions which enables us to prove a number of modulo 2 partition congruences.

ASJC Scopus Sachgebiete

Zitieren

Partition congruences by involutions. / Bessenrodt, Christine; Pak, Igor.
in: European journal of combinatorics, Jahrgang 25, Nr. 8, 11.2004, S. 1139-1149.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bessenrodt C, Pak I. Partition congruences by involutions. European journal of combinatorics. 2004 Nov;25(8):1139-1149. Epub 2004 Jan 16. doi: 10.1016/j.ejc.2003.09.018
Bessenrodt, Christine ; Pak, Igor. / Partition congruences by involutions. in: European journal of combinatorics. 2004 ; Jahrgang 25, Nr. 8. S. 1139-1149.
Download
@article{9987cca3eb24445cbf7c260fc70f0c2e,
title = "Partition congruences by involutions",
abstract = "We present a general construction of involutions on integer partitions which enables us to prove a number of modulo 2 partition congruences.",
keywords = "Fine's Theorem, Franklin's involution, Partition congruence",
author = "Christine Bessenrodt and Igor Pak",
note = "Funding Information: We would like to thank George Andrews and Don Knuth for the interest in the subject and engaging discussions. The second author was supported by the NSA and the NSF. ",
year = "2004",
month = nov,
doi = "10.1016/j.ejc.2003.09.018",
language = "English",
volume = "25",
pages = "1139--1149",
journal = "European journal of combinatorics",
issn = "0195-6698",
publisher = "Academic Press Inc.",
number = "8",

}

Download

TY - JOUR

T1 - Partition congruences by involutions

AU - Bessenrodt, Christine

AU - Pak, Igor

N1 - Funding Information: We would like to thank George Andrews and Don Knuth for the interest in the subject and engaging discussions. The second author was supported by the NSA and the NSF.

PY - 2004/11

Y1 - 2004/11

N2 - We present a general construction of involutions on integer partitions which enables us to prove a number of modulo 2 partition congruences.

AB - We present a general construction of involutions on integer partitions which enables us to prove a number of modulo 2 partition congruences.

KW - Fine's Theorem

KW - Franklin's involution

KW - Partition congruence

UR - http://www.scopus.com/inward/record.url?scp=4444220539&partnerID=8YFLogxK

U2 - 10.1016/j.ejc.2003.09.018

DO - 10.1016/j.ejc.2003.09.018

M3 - Article

AN - SCOPUS:4444220539

VL - 25

SP - 1139

EP - 1149

JO - European journal of combinatorics

JF - European journal of combinatorics

SN - 0195-6698

IS - 8

ER -