Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1139-1149 |
Seitenumfang | 11 |
Fachzeitschrift | European journal of combinatorics |
Jahrgang | 25 |
Ausgabenummer | 8 |
Frühes Online-Datum | 16 Jan. 2004 |
Publikationsstatus | Veröffentlicht - Nov. 2004 |
Abstract
We present a general construction of involutions on integer partitions which enables us to prove a number of modulo 2 partition congruences.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: European journal of combinatorics, Jahrgang 25, Nr. 8, 11.2004, S. 1139-1149.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Partition congruences by involutions
AU - Bessenrodt, Christine
AU - Pak, Igor
N1 - Funding Information: We would like to thank George Andrews and Don Knuth for the interest in the subject and engaging discussions. The second author was supported by the NSA and the NSF.
PY - 2004/11
Y1 - 2004/11
N2 - We present a general construction of involutions on integer partitions which enables us to prove a number of modulo 2 partition congruences.
AB - We present a general construction of involutions on integer partitions which enables us to prove a number of modulo 2 partition congruences.
KW - Fine's Theorem
KW - Franklin's involution
KW - Partition congruence
UR - http://www.scopus.com/inward/record.url?scp=4444220539&partnerID=8YFLogxK
U2 - 10.1016/j.ejc.2003.09.018
DO - 10.1016/j.ejc.2003.09.018
M3 - Article
AN - SCOPUS:4444220539
VL - 25
SP - 1139
EP - 1149
JO - European journal of combinatorics
JF - European journal of combinatorics
SN - 0195-6698
IS - 8
ER -