Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 1248 |
Fachzeitschrift | Agronomy |
Jahrgang | 13 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 27 Apr. 2023 |
Abstract
Although a number of studies have provided information on soil texture, soil classification, and depth to bedrock throughout China, few studies have combined this information, which is the basis for agricultural field management. A total of 81% of China’s cultivated lands are distributed among the Middle–Lower Yangtze Plain (18.2%), arid and semiarid North China Plain (18.2%), Northeast Plain (17%), Huang-Huai-Hai Plain (16.1%), and Yunnan–Guizhou Plateau (11.6%). The Huang-Huai-Hai Plain has the highest density of agricultural land (58.5%) and the greatest depth to bedrock of cultivated land (243–402 m). The lowest cultivated depth to bedrock (4–84 m) is concentrated in the Sichuan Basin and its surrounding regions. The main cultivated soil types are Anthrosols, Fluvisols, Cambisols, Phaeozems, Luvisols, Kastanozems, Leptosols, and Acrisols, under the main topsoil texture classes of loam, clay loam, silty clay loam, silt loam, sandy loam, and clay. The Fluvisols had the largest depth to bedrock (156 m) on the Middle–Lower Yangtze Plain and Huang-Huai-Hai Plain, with the highest silt soil distributions but comparable lower sand contents. The Yunnan–Guizhou Plateau had the highest clay soil content. The cultivation under Kastanozems and Leptosols on the Qinghai–Tibet Plateau and in arid and semiarid North China and under Phaeozems on the Northeast Plain should be restricted and managed very cautiously facing erosion risk. The higher percentages of Anthrosols are on the Middle–Lower Yangtze Plain (37%), in Southern China (32%), and on the Yunnan–Guizhou Plateau (26%). The same cultivation aim (i.e., more crop 0production) has produced a similar range of properties over time among the soils developed on agricultural fields, which are classified as Anthrosols. However, various soil types can still be found in agroecosystems because of the variations in climate and topography. Our results highlight that the agriculture-based soil climate and topography shape the interaction of the soil development and not only the pedogenic history of the soil development under variations in the soil depth to bedrock but also the cultivation of distinct pedogenic features. This study provides cultivated soil information on the depth to bedrock, soil classification, and soil texture in China, as well as instructions for field strategies for sustainable agricultural development.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Agronomie und Nutzpflanzenwissenschaften
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Agronomy, Jahrgang 13, Nr. 5, 1248, 27.04.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Particle Size Distribution and Depth to Bedrock of Chinese Cultivated Soils
T2 - Implications for Soil Classification and Management
AU - Zhao, Xiaoning
AU - He, Wei
AU - Xue, Lihua
AU - Chen, Feng
AU - Jia, Pingping
AU - Hu, Yi
AU - Zamanian, Kazem
N1 - Funding Information: This research was funded by the Jiangsu Specially Appointed Professor Project (grant number R2020T29); the National Natural Science Foundation of China (grant numbers 41877109, 32060433, 42050410320); and research Funds of Jiangsu Hydraulic Research Institute (grant number 2022Z019).
PY - 2023/4/27
Y1 - 2023/4/27
N2 - Although a number of studies have provided information on soil texture, soil classification, and depth to bedrock throughout China, few studies have combined this information, which is the basis for agricultural field management. A total of 81% of China’s cultivated lands are distributed among the Middle–Lower Yangtze Plain (18.2%), arid and semiarid North China Plain (18.2%), Northeast Plain (17%), Huang-Huai-Hai Plain (16.1%), and Yunnan–Guizhou Plateau (11.6%). The Huang-Huai-Hai Plain has the highest density of agricultural land (58.5%) and the greatest depth to bedrock of cultivated land (243–402 m). The lowest cultivated depth to bedrock (4–84 m) is concentrated in the Sichuan Basin and its surrounding regions. The main cultivated soil types are Anthrosols, Fluvisols, Cambisols, Phaeozems, Luvisols, Kastanozems, Leptosols, and Acrisols, under the main topsoil texture classes of loam, clay loam, silty clay loam, silt loam, sandy loam, and clay. The Fluvisols had the largest depth to bedrock (156 m) on the Middle–Lower Yangtze Plain and Huang-Huai-Hai Plain, with the highest silt soil distributions but comparable lower sand contents. The Yunnan–Guizhou Plateau had the highest clay soil content. The cultivation under Kastanozems and Leptosols on the Qinghai–Tibet Plateau and in arid and semiarid North China and under Phaeozems on the Northeast Plain should be restricted and managed very cautiously facing erosion risk. The higher percentages of Anthrosols are on the Middle–Lower Yangtze Plain (37%), in Southern China (32%), and on the Yunnan–Guizhou Plateau (26%). The same cultivation aim (i.e., more crop 0production) has produced a similar range of properties over time among the soils developed on agricultural fields, which are classified as Anthrosols. However, various soil types can still be found in agroecosystems because of the variations in climate and topography. Our results highlight that the agriculture-based soil climate and topography shape the interaction of the soil development and not only the pedogenic history of the soil development under variations in the soil depth to bedrock but also the cultivation of distinct pedogenic features. This study provides cultivated soil information on the depth to bedrock, soil classification, and soil texture in China, as well as instructions for field strategies for sustainable agricultural development.
AB - Although a number of studies have provided information on soil texture, soil classification, and depth to bedrock throughout China, few studies have combined this information, which is the basis for agricultural field management. A total of 81% of China’s cultivated lands are distributed among the Middle–Lower Yangtze Plain (18.2%), arid and semiarid North China Plain (18.2%), Northeast Plain (17%), Huang-Huai-Hai Plain (16.1%), and Yunnan–Guizhou Plateau (11.6%). The Huang-Huai-Hai Plain has the highest density of agricultural land (58.5%) and the greatest depth to bedrock of cultivated land (243–402 m). The lowest cultivated depth to bedrock (4–84 m) is concentrated in the Sichuan Basin and its surrounding regions. The main cultivated soil types are Anthrosols, Fluvisols, Cambisols, Phaeozems, Luvisols, Kastanozems, Leptosols, and Acrisols, under the main topsoil texture classes of loam, clay loam, silty clay loam, silt loam, sandy loam, and clay. The Fluvisols had the largest depth to bedrock (156 m) on the Middle–Lower Yangtze Plain and Huang-Huai-Hai Plain, with the highest silt soil distributions but comparable lower sand contents. The Yunnan–Guizhou Plateau had the highest clay soil content. The cultivation under Kastanozems and Leptosols on the Qinghai–Tibet Plateau and in arid and semiarid North China and under Phaeozems on the Northeast Plain should be restricted and managed very cautiously facing erosion risk. The higher percentages of Anthrosols are on the Middle–Lower Yangtze Plain (37%), in Southern China (32%), and on the Yunnan–Guizhou Plateau (26%). The same cultivation aim (i.e., more crop 0production) has produced a similar range of properties over time among the soils developed on agricultural fields, which are classified as Anthrosols. However, various soil types can still be found in agroecosystems because of the variations in climate and topography. Our results highlight that the agriculture-based soil climate and topography shape the interaction of the soil development and not only the pedogenic history of the soil development under variations in the soil depth to bedrock but also the cultivation of distinct pedogenic features. This study provides cultivated soil information on the depth to bedrock, soil classification, and soil texture in China, as well as instructions for field strategies for sustainable agricultural development.
KW - agropedogenesis
KW - environmental planning
KW - global changes
KW - land utility
KW - soil taxonomy
UR - http://www.scopus.com/inward/record.url?scp=85160419721&partnerID=8YFLogxK
U2 - 10.3390/agronomy13051248
DO - 10.3390/agronomy13051248
M3 - Article
AN - SCOPUS:85160419721
VL - 13
JO - Agronomy
JF - Agronomy
SN - 2073-4395
IS - 5
M1 - 1248
ER -