Parametrised enumeration

Publikation: Qualifikations-/StudienabschlussarbeitHabilitationsschrift

Autorschaft

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor habilitatus
Gradverleihende Hochschule
Betreut von
  • Tantau, Till, Betreuer*in, Externe Person
Datum der Verleihung des Grades11 Feb. 2020
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2020

Abstract

In diesem Werk begründen wir die Theorie der parametrisierten Enumeration, präsentieren die grundlegenden Definitionen und prüfen ihre Sinnhaftigkeit. Im nächsten Schritt, untersuchen wir das Zusammenspiel der eingeführten Komplexitätsklassen und zeigen Verbindungen zur klassischen Enumerationskomplexität auf. Anschließend übertragen wir die zwei fundamentalen Techniken der Kernelisierung und Selbstreduzierbarkeit in Entsprechungen in dem Gebiet der parametrisierten Enumeration. Schließlich untersuchen wir das Problem Max-Ones-SAT und das Problem der Aufzählung starker Backdoor-Mengen als typische Probleme in diesen Klassen. Die vorherigen Resultate zu Max-Ones-SAT werden anschließend in einem Dichotomie-Satz vervollständigt. Im nächsten Abschnitt erweitern wir die neuen Definitionen auf Ordnungen (auf dem Lösungsraum) und erforschen insbesondere die zwei Relationen \glqq Größenordnung\grqq\ und \glqq lexikographische Reihenfolge\grqq\ im Kontext von Graphen-Modifikationsproblemen. Hierbei scheint es, als müsste man zwischen Delay und Speicheranforderungen von Aufzählungsalgorithmen abwägen, wobei dies jedoch nicht abschließend gelöst werden kann. Aus den vorherigen Überlegungen wird schließlich ein generisches Enumerationsverfahren für allgemeine Modifikationsprobleme entwickelt und anhand der Probleme Closest String, schwacher und starker Backdoor-Mengen sowie gewichteter Erfüllbarkeit veranschaulicht. Im letzten Abschnitt betrachten wir die parametrisierte Enumerationskomplexität von Erfüllbarkeitsproblemen im Bereich der Poor Man's Propositional Dependence Logic und stellen einen Aufzählungsalgorithmus mit FPT Delay vor, der mit exponentiellem Platz arbeitet. Dies ist einer der ersten Aufzählungsalgorithmen im Bereich der Teamlogiken. Abschließend zeigen wir, wie dieser Algorithmus so modifiziert werden kann, dass nur polynomieller Speicherplatz benötigt wird, bezahlen jedoch diese Einsparung mit einem Anstieg des Delays auf inkrementelle FPT Zeit (IncFPT).

Zitieren

Parametrised enumeration. / Meier, Arne.
Hannover, 2020. 111 S.

Publikation: Qualifikations-/StudienabschlussarbeitHabilitationsschrift

Meier, A 2020, 'Parametrised enumeration', Doctor habilitatus, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/9427
Meier, A. (2020). Parametrised enumeration. [Habilitationsschrift, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/9427
Meier A. Parametrised enumeration. Hannover, 2020. 111 S. doi: 10.15488/9427
Meier, Arne. / Parametrised enumeration. Hannover, 2020. 111 S.
Download
@phdthesis{f57733981d1f467d8668cfaf23d0400d,
title = "Parametrised enumeration",
abstract = "In this thesis, we develop a framework of parametrised enumeration complexity. At first, we provide the reader with preliminary notions such as machine models and complexity classes besides proving them to be well-chosen. Then, we study the interplay and the landscape of these classes and present connections to classical enumeration classes. Afterwards, we translate the fundamental methods of kernelisation and self-reducibility into equivalent techniques in the setting of parametrised enumeration. Subsequently, we illustrate the introduced classes by investigating the parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT. After this, we extend the definitions of parametrised enumeration algorithms by allowing orders on the solution space. In this context, we study the relations ``order by size'' and ``lexicographic order'' for graph modification problems and observe a trade-off between enumeration delay and space requirements of enumeration algorithms. These results then yield an enumeration technique for generalised modification problems that is illustrated by applying this method to the problems closest string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we consider the enumeration of satisfying teams of formulas of poor man's propositional dependence logic. There, we present an enumeration algorithm with FPT delay and exponential space which is one of the first enumeration complexity results of a problem in a team logic. Finally, we show how this algorithm can be modified such that only polynomial space is required, however, by increasing the delay to incremental FPT time.",
author = "Arne Meier",
year = "2020",
doi = "10.15488/9427",
language = "English",
type = "Habilitation treatise",
school = "Leibniz University Hannover",

}

Download

TY - THES

T1 - Parametrised enumeration

AU - Meier, Arne

PY - 2020

Y1 - 2020

N2 - In this thesis, we develop a framework of parametrised enumeration complexity. At first, we provide the reader with preliminary notions such as machine models and complexity classes besides proving them to be well-chosen. Then, we study the interplay and the landscape of these classes and present connections to classical enumeration classes. Afterwards, we translate the fundamental methods of kernelisation and self-reducibility into equivalent techniques in the setting of parametrised enumeration. Subsequently, we illustrate the introduced classes by investigating the parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT. After this, we extend the definitions of parametrised enumeration algorithms by allowing orders on the solution space. In this context, we study the relations ``order by size'' and ``lexicographic order'' for graph modification problems and observe a trade-off between enumeration delay and space requirements of enumeration algorithms. These results then yield an enumeration technique for generalised modification problems that is illustrated by applying this method to the problems closest string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we consider the enumeration of satisfying teams of formulas of poor man's propositional dependence logic. There, we present an enumeration algorithm with FPT delay and exponential space which is one of the first enumeration complexity results of a problem in a team logic. Finally, we show how this algorithm can be modified such that only polynomial space is required, however, by increasing the delay to incremental FPT time.

AB - In this thesis, we develop a framework of parametrised enumeration complexity. At first, we provide the reader with preliminary notions such as machine models and complexity classes besides proving them to be well-chosen. Then, we study the interplay and the landscape of these classes and present connections to classical enumeration classes. Afterwards, we translate the fundamental methods of kernelisation and self-reducibility into equivalent techniques in the setting of parametrised enumeration. Subsequently, we illustrate the introduced classes by investigating the parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT. After this, we extend the definitions of parametrised enumeration algorithms by allowing orders on the solution space. In this context, we study the relations ``order by size'' and ``lexicographic order'' for graph modification problems and observe a trade-off between enumeration delay and space requirements of enumeration algorithms. These results then yield an enumeration technique for generalised modification problems that is illustrated by applying this method to the problems closest string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we consider the enumeration of satisfying teams of formulas of poor man's propositional dependence logic. There, we present an enumeration algorithm with FPT delay and exponential space which is one of the first enumeration complexity results of a problem in a team logic. Finally, we show how this algorithm can be modified such that only polynomial space is required, however, by increasing the delay to incremental FPT time.

U2 - 10.15488/9427

DO - 10.15488/9427

M3 - Habilitation treatise

CY - Hannover

ER -

Von denselben Autoren