Oseledets Splitting and Invariant Manifolds on Fields of Banach Spaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Mazyar Ghani Varzaneh
  • Sebastian Riedel

Externe Organisationen

  • Sharif University of Technology
  • Technische Universität Berlin
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)103-133
Seitenumfang31
FachzeitschriftJournal of Dynamics and Differential Equations
Jahrgang35
Ausgabenummer1
Frühes Online-Datum10 März 2021
PublikationsstatusVeröffentlicht - März 2023
Extern publiziertJa

Abstract

We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an application, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable fields of Banach spaces.

ASJC Scopus Sachgebiete

Zitieren

Oseledets Splitting and Invariant Manifolds on Fields of Banach Spaces. / Ghani Varzaneh, Mazyar; Riedel, Sebastian.
in: Journal of Dynamics and Differential Equations, Jahrgang 35, Nr. 1, 03.2023, S. 103-133.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Ghani Varzaneh M, Riedel S. Oseledets Splitting and Invariant Manifolds on Fields of Banach Spaces. Journal of Dynamics and Differential Equations. 2023 Mär;35(1):103-133. Epub 2021 Mär 10. doi: 10.1007/s10884-021-09969-1
Ghani Varzaneh, Mazyar ; Riedel, Sebastian. / Oseledets Splitting and Invariant Manifolds on Fields of Banach Spaces. in: Journal of Dynamics and Differential Equations. 2023 ; Jahrgang 35, Nr. 1. S. 103-133.
Download
@article{c19b006c26d94efa998f4023d760d0e6,
title = "Oseledets Splitting and Invariant Manifolds on Fields of Banach Spaces",
abstract = "We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an application, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable fields of Banach spaces.",
keywords = "Fields of Banach spaces, Invariant manifolds, Oseledets splitting, Semi-invertible multiplicative ergodic theorem",
author = "{Ghani Varzaneh}, Mazyar and Sebastian Riedel",
note = "Publisher Copyright: {\textcopyright} 2021, The Author(s).",
year = "2023",
month = mar,
doi = "10.1007/s10884-021-09969-1",
language = "English",
volume = "35",
pages = "103--133",
journal = "Journal of Dynamics and Differential Equations",
issn = "1040-7294",
publisher = "Springer New York",
number = "1",

}

Download

TY - JOUR

T1 - Oseledets Splitting and Invariant Manifolds on Fields of Banach Spaces

AU - Ghani Varzaneh, Mazyar

AU - Riedel, Sebastian

N1 - Publisher Copyright: © 2021, The Author(s).

PY - 2023/3

Y1 - 2023/3

N2 - We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an application, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable fields of Banach spaces.

AB - We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an application, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable fields of Banach spaces.

KW - Fields of Banach spaces

KW - Invariant manifolds

KW - Oseledets splitting

KW - Semi-invertible multiplicative ergodic theorem

UR - http://www.scopus.com/inward/record.url?scp=85102429105&partnerID=8YFLogxK

U2 - 10.1007/s10884-021-09969-1

DO - 10.1007/s10884-021-09969-1

M3 - Article

VL - 35

SP - 103

EP - 133

JO - Journal of Dynamics and Differential Equations

JF - Journal of Dynamics and Differential Equations

SN - 1040-7294

IS - 1

ER -