Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 103-133 |
Seitenumfang | 31 |
Fachzeitschrift | Journal of Dynamics and Differential Equations |
Jahrgang | 35 |
Ausgabenummer | 1 |
Frühes Online-Datum | 10 März 2021 |
Publikationsstatus | Veröffentlicht - März 2023 |
Extern publiziert | Ja |
Abstract
We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an application, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable fields of Banach spaces.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Dynamics and Differential Equations, Jahrgang 35, Nr. 1, 03.2023, S. 103-133.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Oseledets Splitting and Invariant Manifolds on Fields of Banach Spaces
AU - Ghani Varzaneh, Mazyar
AU - Riedel, Sebastian
N1 - Publisher Copyright: © 2021, The Author(s).
PY - 2023/3
Y1 - 2023/3
N2 - We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an application, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable fields of Banach spaces.
AB - We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an application, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable fields of Banach spaces.
KW - Fields of Banach spaces
KW - Invariant manifolds
KW - Oseledets splitting
KW - Semi-invertible multiplicative ergodic theorem
UR - http://www.scopus.com/inward/record.url?scp=85102429105&partnerID=8YFLogxK
U2 - 10.1007/s10884-021-09969-1
DO - 10.1007/s10884-021-09969-1
M3 - Article
VL - 35
SP - 103
EP - 133
JO - Journal of Dynamics and Differential Equations
JF - Journal of Dynamics and Differential Equations
SN - 1040-7294
IS - 1
ER -