Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 125-146 |
Seitenumfang | 22 |
Fachzeitschrift | International Journal of Coal Geology |
Jahrgang | 152 |
Publikationsstatus | Veröffentlicht - 1 Dez. 2015 |
Abstract
Geological investigations in the offshore area of eastern Russian Arctic attracted an increased interest in the recent years. Data concerning organic and coal petrology is scarce for the shelf and offshore area of the eastern Russian Arctic. Consequently, thermal maturity and depositional environments of sedimentary facies remain less described and examined. A detailed characterisation of organic matter type and origin as well as determination of thermal maturity have been carried out on siliciclastic and carbonate sedimentary samples from Paleozoic, Mesozoic and Cenozoic outcrops of the New Siberian Islands, eastern Russian Arctic. The acquired organic and coal petrological data contribute to the overall assessment of petroleum potential of the studied offshore area and the neighboring shelf area.The investigated organic matter of Silurian and Middle Devonian mudstones and siltstones contain distinct, multi-staged solid bitumen ("dead oil") preserved either as fracture-, fissure-, and vein-fillings, indicating activation of migrations pathways for re-occurring crude oil-bearing fluids or in form of "streaks". The examined dispersed organic matter of Triassic deposits is predominantly composed of terrestrially derived macerals followed by alginite macerals (. Tasmanite and Leiosphaeridia prasinophytes). The analysed Cretaceous and Tertiary deposits reveal (i) Aptian/Albian inertinite-rich sub-bituminous coal and lignites formed in fresh water lakes and swamps to brackish near-shore depositional environments with phases of wildfires as well as (ii) Cenomanian/Turonian lignites with pollen grains and carbonised debris (pyrofusinite), indicating stages of forest/moor paleofires. The (iii) Paleocene and Eocene deposits bear mineral-rich and xylite-rich lignites characterised by the lowest coal rank stage, containing different fossil conifer species.The thermal maturity of organic matter in Silurian to Tertiary deposits obtained from random vitrinite and bitumen reflectance measurements is an important parameter in determining the petroleum generation stage at the studied localities. The calculated thermal maturities of Silurian to Middle Devonian deposits acquired from random reflectance measurements of bitumen indicate condensate-wet gas to early dry gas generation window. The thermal maturities of sedimentary organic matter in samples collected from Tertiary to Triassic successions ranges from immature to main phase of oil generation.The composition of the organic matter and thermal maturity of the analysed Triassic siliciclastic deposits suggesting mature stage for oil generation can be used among others to evaluate their hydrocarbon potential. The Cretaceous and Tertiary deposits can be described as thermally immature. In two localities, where the thermal maturity is anomalously high, the examined organic matter has been thermally altered beyond the dry gas preservation limit.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Feuerungstechnik
- Erdkunde und Planetologie (insg.)
- Geologie
- Erdkunde und Planetologie (insg.)
- Ökonomische Geologie
- Erdkunde und Planetologie (insg.)
- Stratigraphie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Journal of Coal Geology, Jahrgang 152, 01.12.2015, S. 125-146.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Organic matter type, origin and thermal maturity of Paleozoic, Mesozoic and Cenozoic successions of the New Siberian Islands, eastern Russian Arctic
AU - Kus, J.
AU - Tolmacheva, T.
AU - Dolezych, M.
AU - Gaedicke, C.
AU - Franke, D.
AU - Brandes, C.
AU - Blumenberg, M.
AU - Piepjohn, K.
AU - Pletsch, T.
N1 - Funding information: Peter Sobolev is gratefully acknowledged for his prominent insights on the geological history of the New Siberian Islands and his valuable assistance during the CASE expedition. The CASE expedition was carried out within the framework of the BGR-program “Circum-Arctic Structural Events” (CASE) in September 2011. The BMBF/German Federal Ministry of Education and Research (Internationales Büro des BMBF) is thankfully acknowledged for financial supporting C. Brandes (RUS 11/A09). Review comments from H.I. Petersen and an anonymous reviewer helped to improve the paper. The article is published with the permission of Federal institute for Geosciences and Natural Resources (BGR).
PY - 2015/12/1
Y1 - 2015/12/1
N2 - Geological investigations in the offshore area of eastern Russian Arctic attracted an increased interest in the recent years. Data concerning organic and coal petrology is scarce for the shelf and offshore area of the eastern Russian Arctic. Consequently, thermal maturity and depositional environments of sedimentary facies remain less described and examined. A detailed characterisation of organic matter type and origin as well as determination of thermal maturity have been carried out on siliciclastic and carbonate sedimentary samples from Paleozoic, Mesozoic and Cenozoic outcrops of the New Siberian Islands, eastern Russian Arctic. The acquired organic and coal petrological data contribute to the overall assessment of petroleum potential of the studied offshore area and the neighboring shelf area.The investigated organic matter of Silurian and Middle Devonian mudstones and siltstones contain distinct, multi-staged solid bitumen ("dead oil") preserved either as fracture-, fissure-, and vein-fillings, indicating activation of migrations pathways for re-occurring crude oil-bearing fluids or in form of "streaks". The examined dispersed organic matter of Triassic deposits is predominantly composed of terrestrially derived macerals followed by alginite macerals (. Tasmanite and Leiosphaeridia prasinophytes). The analysed Cretaceous and Tertiary deposits reveal (i) Aptian/Albian inertinite-rich sub-bituminous coal and lignites formed in fresh water lakes and swamps to brackish near-shore depositional environments with phases of wildfires as well as (ii) Cenomanian/Turonian lignites with pollen grains and carbonised debris (pyrofusinite), indicating stages of forest/moor paleofires. The (iii) Paleocene and Eocene deposits bear mineral-rich and xylite-rich lignites characterised by the lowest coal rank stage, containing different fossil conifer species.The thermal maturity of organic matter in Silurian to Tertiary deposits obtained from random vitrinite and bitumen reflectance measurements is an important parameter in determining the petroleum generation stage at the studied localities. The calculated thermal maturities of Silurian to Middle Devonian deposits acquired from random reflectance measurements of bitumen indicate condensate-wet gas to early dry gas generation window. The thermal maturities of sedimentary organic matter in samples collected from Tertiary to Triassic successions ranges from immature to main phase of oil generation.The composition of the organic matter and thermal maturity of the analysed Triassic siliciclastic deposits suggesting mature stage for oil generation can be used among others to evaluate their hydrocarbon potential. The Cretaceous and Tertiary deposits can be described as thermally immature. In two localities, where the thermal maturity is anomalously high, the examined organic matter has been thermally altered beyond the dry gas preservation limit.
AB - Geological investigations in the offshore area of eastern Russian Arctic attracted an increased interest in the recent years. Data concerning organic and coal petrology is scarce for the shelf and offshore area of the eastern Russian Arctic. Consequently, thermal maturity and depositional environments of sedimentary facies remain less described and examined. A detailed characterisation of organic matter type and origin as well as determination of thermal maturity have been carried out on siliciclastic and carbonate sedimentary samples from Paleozoic, Mesozoic and Cenozoic outcrops of the New Siberian Islands, eastern Russian Arctic. The acquired organic and coal petrological data contribute to the overall assessment of petroleum potential of the studied offshore area and the neighboring shelf area.The investigated organic matter of Silurian and Middle Devonian mudstones and siltstones contain distinct, multi-staged solid bitumen ("dead oil") preserved either as fracture-, fissure-, and vein-fillings, indicating activation of migrations pathways for re-occurring crude oil-bearing fluids or in form of "streaks". The examined dispersed organic matter of Triassic deposits is predominantly composed of terrestrially derived macerals followed by alginite macerals (. Tasmanite and Leiosphaeridia prasinophytes). The analysed Cretaceous and Tertiary deposits reveal (i) Aptian/Albian inertinite-rich sub-bituminous coal and lignites formed in fresh water lakes and swamps to brackish near-shore depositional environments with phases of wildfires as well as (ii) Cenomanian/Turonian lignites with pollen grains and carbonised debris (pyrofusinite), indicating stages of forest/moor paleofires. The (iii) Paleocene and Eocene deposits bear mineral-rich and xylite-rich lignites characterised by the lowest coal rank stage, containing different fossil conifer species.The thermal maturity of organic matter in Silurian to Tertiary deposits obtained from random vitrinite and bitumen reflectance measurements is an important parameter in determining the petroleum generation stage at the studied localities. The calculated thermal maturities of Silurian to Middle Devonian deposits acquired from random reflectance measurements of bitumen indicate condensate-wet gas to early dry gas generation window. The thermal maturities of sedimentary organic matter in samples collected from Tertiary to Triassic successions ranges from immature to main phase of oil generation.The composition of the organic matter and thermal maturity of the analysed Triassic siliciclastic deposits suggesting mature stage for oil generation can be used among others to evaluate their hydrocarbon potential. The Cretaceous and Tertiary deposits can be described as thermally immature. In two localities, where the thermal maturity is anomalously high, the examined organic matter has been thermally altered beyond the dry gas preservation limit.
KW - New Siberian Islands
KW - Organic and coal petrology
KW - Russian Arctic
KW - Solid bitumen
KW - Thermal maturity
UR - http://www.scopus.com/inward/record.url?scp=84947778790&partnerID=8YFLogxK
U2 - 10.1016/j.coal.2015.11.003
DO - 10.1016/j.coal.2015.11.003
M3 - Article
AN - SCOPUS:84947778790
VL - 152
SP - 125
EP - 146
JO - International Journal of Coal Geology
JF - International Journal of Coal Geology
SN - 0166-5162
ER -