Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 49-54 |
Seitenumfang | 6 |
Fachzeitschrift | Moscow Mathematical Journal |
Jahrgang | 12 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 2012 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Moscow Mathematical Journal, Jahrgang 12, Nr. 1, 2012, S. 49-54.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Orbifold Euler characteristics for dual invertible polynomials
AU - Ebeling, Wolfgang
AU - Gusein-Zade, Sabir M.
N1 - Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - To construct mirror symmetric Landau-Ginzburg models, P.Berglund, T.Hübsch and M.Henningson considered a pair $(f,G)$ consisting of an invertible polynomial $f$ and an abelian group $G$ of its symmetries together with a dual pair $(\widetilde{f}, \widetilde{G})$. Here we study the reduced orbifold Euler characteristics of the Milnor fibres of $f$ and $\widetilde f$ with the actions of the groups $G$ and $\widetilde G$ respectively and show that they coincide up to a sign.
AB - To construct mirror symmetric Landau-Ginzburg models, P.Berglund, T.Hübsch and M.Henningson considered a pair $(f,G)$ consisting of an invertible polynomial $f$ and an abelian group $G$ of its symmetries together with a dual pair $(\widetilde{f}, \widetilde{G})$. Here we study the reduced orbifold Euler characteristics of the Milnor fibres of $f$ and $\widetilde f$ with the actions of the groups $G$ and $\widetilde G$ respectively and show that they coincide up to a sign.
KW - Group actions
KW - Invertible polynomials
KW - Orbifold Euler characteristic
UR - http://www.scopus.com/inward/record.url?scp=84855863151&partnerID=8YFLogxK
U2 - 10.17323/1609-4514-2012-12-1-49-54
DO - 10.17323/1609-4514-2012-12-1-49-54
M3 - Article
AN - SCOPUS:84855863151
VL - 12
SP - 49
EP - 54
JO - Moscow Mathematical Journal
JF - Moscow Mathematical Journal
SN - 1609-3321
IS - 1
ER -