Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 531-539 |
Seitenumfang | 9 |
Fachzeitschrift | Energy Procedia |
Jahrgang | 92 |
Publikationsstatus | Veröffentlicht - 1 Aug. 2016 |
Veranstaltung | 6th International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2016 - Chambery, Frankreich Dauer: 7 März 2016 → 9 März 2016 |
Abstract
Improving the light trapping in a module results in an increase in the generated current. Consequently, an optimization of the front grid metallization of the cell is required for the best trade-off between series resistance, shading, and recombination losses. For this purpose, we combine ray tracing and electrical solar cell and module calculations that explicitly account for cell and module interactions. Our model bases on experimentally verified input parameters: We determine the electrical and optical properties of the front metal fingers of passivated emitter and rear cells (PERC). We show that the effective optical width of the front metal fingers in the module is significantly reduced by 54%. The optimized simulated module has 120 half-size PERC with 20.2% cell efficiency and has an output power of 295.2 W. This is achieved with an increased number of 120 front metal fingers per cell, four white-colored cell interconnection ribbons (CIR), and an increased cell spacing. Applying these optimized design changes to an experimental module we measure a module power output of 294.8 W and a cell-to-module (CTM) factor of 1.02. Measured and simulated power agree and the deviations in Voc, Isc and FF are less than 0.91%rel. We perform a module power gain analysis for the fabricated module and simulate a potential maximum module power of 374.1 W when including further improvements.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Allgemeine Energie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Energy Procedia, Jahrgang 92, 01.08.2016, S. 531-539.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Optimizing the Solar Cell Front Side Metallization and the Cell Interconnection for High Module Power Output
AU - Witteck, Robert
AU - Schulte-Huxel, Henning
AU - Holst, Hendrik
AU - Hinken, David
AU - Vogt, Malte
AU - Blankemeyer, Susanne
AU - Köntges, Marc
AU - Bothe, Karsten
AU - Brendel, Rolf
N1 - Funding Information: The results were generated in the PERC2Module project funded by German Federal Ministry for Economic Affairs and Energy under Contract 0325641. We would like thank the PERC2Module team for the cell and module production.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - Improving the light trapping in a module results in an increase in the generated current. Consequently, an optimization of the front grid metallization of the cell is required for the best trade-off between series resistance, shading, and recombination losses. For this purpose, we combine ray tracing and electrical solar cell and module calculations that explicitly account for cell and module interactions. Our model bases on experimentally verified input parameters: We determine the electrical and optical properties of the front metal fingers of passivated emitter and rear cells (PERC). We show that the effective optical width of the front metal fingers in the module is significantly reduced by 54%. The optimized simulated module has 120 half-size PERC with 20.2% cell efficiency and has an output power of 295.2 W. This is achieved with an increased number of 120 front metal fingers per cell, four white-colored cell interconnection ribbons (CIR), and an increased cell spacing. Applying these optimized design changes to an experimental module we measure a module power output of 294.8 W and a cell-to-module (CTM) factor of 1.02. Measured and simulated power agree and the deviations in Voc, Isc and FF are less than 0.91%rel. We perform a module power gain analysis for the fabricated module and simulate a potential maximum module power of 374.1 W when including further improvements.
AB - Improving the light trapping in a module results in an increase in the generated current. Consequently, an optimization of the front grid metallization of the cell is required for the best trade-off between series resistance, shading, and recombination losses. For this purpose, we combine ray tracing and electrical solar cell and module calculations that explicitly account for cell and module interactions. Our model bases on experimentally verified input parameters: We determine the electrical and optical properties of the front metal fingers of passivated emitter and rear cells (PERC). We show that the effective optical width of the front metal fingers in the module is significantly reduced by 54%. The optimized simulated module has 120 half-size PERC with 20.2% cell efficiency and has an output power of 295.2 W. This is achieved with an increased number of 120 front metal fingers per cell, four white-colored cell interconnection ribbons (CIR), and an increased cell spacing. Applying these optimized design changes to an experimental module we measure a module power output of 294.8 W and a cell-to-module (CTM) factor of 1.02. Measured and simulated power agree and the deviations in Voc, Isc and FF are less than 0.91%rel. We perform a module power gain analysis for the fabricated module and simulate a potential maximum module power of 374.1 W when including further improvements.
KW - cell interconnection
KW - cell to module losses
KW - front metallization
KW - olar modules
KW - PERC solar cells
UR - http://www.scopus.com/inward/record.url?scp=85014507431&partnerID=8YFLogxK
U2 - 10.1016/j.egypro.2016.07.137
DO - 10.1016/j.egypro.2016.07.137
M3 - Conference article
AN - SCOPUS:85014507431
VL - 92
SP - 531
EP - 539
JO - Energy Procedia
JF - Energy Procedia
SN - 1876-6102
T2 - 6th International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2016
Y2 - 7 March 2016 through 9 March 2016
ER -