Optimized growth and reorientation of anisotropic material based on evolution equations

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Ruhr-Universität Bochum
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)47-66
Seitenumfang20
FachzeitschriftComputational mechanics
Jahrgang62
Ausgabenummer1
Frühes Online-Datum18 Sept. 2017
PublikationsstatusVeröffentlicht - Juli 2018

Abstract

Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton’s principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.

ASJC Scopus Sachgebiete

Zitieren

Optimized growth and reorientation of anisotropic material based on evolution equations. / Jantos, Dustin R.; Hackl, Klaus; Junker, Philipp.
in: Computational mechanics, Jahrgang 62, Nr. 1, 07.2018, S. 47-66.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{c24223a69e5a454abae232474e51eb1f,
title = "Optimized growth and reorientation of anisotropic material based on evolution equations",
abstract = "Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton{\textquoteright}s principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.",
keywords = "Anisotropic, Energy methods, Internal variable, Optimization",
author = "Jantos, {Dustin R.} and Klaus Hackl and Philipp Junker",
note = "Publisher Copyright: {\textcopyright} 2017, Springer-Verlag GmbH Germany.",
year = "2018",
month = jul,
doi = "10.1007/s00466-017-1483-3",
language = "English",
volume = "62",
pages = "47--66",
journal = "Computational mechanics",
issn = "0178-7675",
publisher = "Springer Verlag",
number = "1",

}

Download

TY - JOUR

T1 - Optimized growth and reorientation of anisotropic material based on evolution equations

AU - Jantos, Dustin R.

AU - Hackl, Klaus

AU - Junker, Philipp

N1 - Publisher Copyright: © 2017, Springer-Verlag GmbH Germany.

PY - 2018/7

Y1 - 2018/7

N2 - Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton’s principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.

AB - Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton’s principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.

KW - Anisotropic

KW - Energy methods

KW - Internal variable

KW - Optimization

UR - http://www.scopus.com/inward/record.url?scp=85029601346&partnerID=8YFLogxK

U2 - 10.1007/s00466-017-1483-3

DO - 10.1007/s00466-017-1483-3

M3 - Article

VL - 62

SP - 47

EP - 66

JO - Computational mechanics

JF - Computational mechanics

SN - 0178-7675

IS - 1

ER -

Von denselben Autoren