Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 013 |
Seiten (von - bis) | 4301-4314 |
Seitenumfang | 14 |
Fachzeitschrift | Journal of Physics B: Atomic and Molecular Physics |
Jahrgang | 15 |
Ausgabenummer | 23 |
Publikationsstatus | Veröffentlicht - 1982 |
Extern publiziert | Ja |
Abstract
Siegert's representation (1960) for the grand canonical partition function of a fermion system with two-particle interactions serves as a starting point for a perturbation expansion around stationary points. It is shown that, in general, the latter are given by solutions of the time-independent Hartree equation. Introducing more general random fields, exchange terms are obtained in the stationarity equation. The procedure is extended to relativistic systems. A perturbative expansion for e.g. the ground-state energy of the N-particle relativistic bound-state problem is obtained which allows, contrary to 'Hamiltonian methods', a straightforward application of standard regularisation and renormalisation procedures.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Physics B: Atomic and Molecular Physics, Jahrgang 15, Nr. 23, 013, 1982, S. 4301-4314.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Optimised mean fields for atoms. I. Mean-field methods for the description of N-fermion systems
AU - Dietz, K.
AU - Lechtenfeld, O.
AU - Weymans, G.
N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1982
Y1 - 1982
N2 - Siegert's representation (1960) for the grand canonical partition function of a fermion system with two-particle interactions serves as a starting point for a perturbation expansion around stationary points. It is shown that, in general, the latter are given by solutions of the time-independent Hartree equation. Introducing more general random fields, exchange terms are obtained in the stationarity equation. The procedure is extended to relativistic systems. A perturbative expansion for e.g. the ground-state energy of the N-particle relativistic bound-state problem is obtained which allows, contrary to 'Hamiltonian methods', a straightforward application of standard regularisation and renormalisation procedures.
AB - Siegert's representation (1960) for the grand canonical partition function of a fermion system with two-particle interactions serves as a starting point for a perturbation expansion around stationary points. It is shown that, in general, the latter are given by solutions of the time-independent Hartree equation. Introducing more general random fields, exchange terms are obtained in the stationarity equation. The procedure is extended to relativistic systems. A perturbative expansion for e.g. the ground-state energy of the N-particle relativistic bound-state problem is obtained which allows, contrary to 'Hamiltonian methods', a straightforward application of standard regularisation and renormalisation procedures.
UR - http://www.scopus.com/inward/record.url?scp=36149038641&partnerID=8YFLogxK
U2 - 10.1088/0022-3700/15/23/013
DO - 10.1088/0022-3700/15/23/013
M3 - Article
AN - SCOPUS:36149038641
VL - 15
SP - 4301
EP - 4314
JO - Journal of Physics B: Atomic and Molecular Physics
JF - Journal of Physics B: Atomic and Molecular Physics
SN - 0022-3700
IS - 23
M1 - 013
ER -