Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | European Quantum Electronics Conference, EQEC_2019 |
Herausgeber (Verlag) | OSA - The Optical Society |
ISBN (elektronisch) | 9781557528209 |
ISBN (Print) | 9781728104690 |
Publikationsstatus | Veröffentlicht - 2019 |
Extern publiziert | Ja |
Veranstaltung | European Quantum Electronics Conference, EQEC_2019 - Munich, Großbritannien / Vereinigtes Königreich Dauer: 23 Juni 2019 → 27 Juni 2019 |
Publikationsreihe
Name | Optics InfoBase Conference Papers |
---|---|
Band | Part F143-EQEC 2019 |
Abstract
Cluster states, a specific class of multi-partite entangled states, are of particular importance for quantum science, as such systems are equivalent to the realization of one-way (or measurement-based) quantum computers [1]. In this scheme, algorithms are implemented through high-fidelity measurements on the parties of the state [2]. While two-level (i.e. qubit) cluster states have been realized so far, increasing the number of particles to boost the computational resource comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to noise, restricting the realization of discrete cluster states to a record of eight qubits. In contrast, the demonstration of d-level (i.e. qudit) cluster states has the potential to i) increase quantum resources without modifying the number of particles; ii) enable the implementation of highly efficient computational protocols; iii) reduce the noise sensitivity of the states. Up till now, the realization of discrete d-level cluster states has not been shown in any quantum platform. We here demonstrate the realization of d-level cluster states, perform d-level one-way quantum processing operations on the states, and show that higher-dimensional forms of cluster states are more noise tolerant than lower dimensional realizations.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Ingenieurwesen (insg.)
- Werkstoffmechanik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
European Quantum Electronics Conference, EQEC_2019. OSA - The Optical Society, 2019. 2019-eb_4_6 (Optics InfoBase Conference Papers; Band Part F143-EQEC 2019).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Optical d-level frequency-time-based cluster states
AU - Kues, Michael
AU - Reimer, Christian
AU - Sciara, Stefania
AU - Roztocki, Piotr
AU - Islam, Mehedi
AU - Cortés, Luis Romero
AU - Zhang, Yanbing
AU - Fischer, Bennet
AU - Loranger, Sébastien
AU - Kashyap, Raman
AU - Cino, Alfonso
AU - Chu, Sai T.
AU - Little, Brent E.
AU - Moss, David J.
AU - Caspani, Lucia
AU - Munro, William J.
AU - Azaña, José
AU - Morandotti, Roberto
N1 - Publisher Copyright: © 2019 IEEE Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019
Y1 - 2019
N2 - Cluster states, a specific class of multi-partite entangled states, are of particular importance for quantum science, as such systems are equivalent to the realization of one-way (or measurement-based) quantum computers [1]. In this scheme, algorithms are implemented through high-fidelity measurements on the parties of the state [2]. While two-level (i.e. qubit) cluster states have been realized so far, increasing the number of particles to boost the computational resource comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to noise, restricting the realization of discrete cluster states to a record of eight qubits. In contrast, the demonstration of d-level (i.e. qudit) cluster states has the potential to i) increase quantum resources without modifying the number of particles; ii) enable the implementation of highly efficient computational protocols; iii) reduce the noise sensitivity of the states. Up till now, the realization of discrete d-level cluster states has not been shown in any quantum platform. We here demonstrate the realization of d-level cluster states, perform d-level one-way quantum processing operations on the states, and show that higher-dimensional forms of cluster states are more noise tolerant than lower dimensional realizations.
AB - Cluster states, a specific class of multi-partite entangled states, are of particular importance for quantum science, as such systems are equivalent to the realization of one-way (or measurement-based) quantum computers [1]. In this scheme, algorithms are implemented through high-fidelity measurements on the parties of the state [2]. While two-level (i.e. qubit) cluster states have been realized so far, increasing the number of particles to boost the computational resource comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to noise, restricting the realization of discrete cluster states to a record of eight qubits. In contrast, the demonstration of d-level (i.e. qudit) cluster states has the potential to i) increase quantum resources without modifying the number of particles; ii) enable the implementation of highly efficient computational protocols; iii) reduce the noise sensitivity of the states. Up till now, the realization of discrete d-level cluster states has not been shown in any quantum platform. We here demonstrate the realization of d-level cluster states, perform d-level one-way quantum processing operations on the states, and show that higher-dimensional forms of cluster states are more noise tolerant than lower dimensional realizations.
UR - http://www.scopus.com/inward/record.url?scp=85084615506&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85084615506
SN - 9781728104690
T3 - Optics InfoBase Conference Papers
BT - European Quantum Electronics Conference, EQEC_2019
PB - OSA - The Optical Society
T2 - European Quantum Electronics Conference, EQEC_2019
Y2 - 23 June 2019 through 27 June 2019
ER -