Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seiten | 2648-2650 |
Seitenumfang | 3 |
ISBN (elektronisch) | 9781538685297 |
Publikationsstatus | Veröffentlicht - 26 Nov. 2018 |
Extern publiziert | Ja |
Veranstaltung | 7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - Waikoloa Village, USA / Vereinigte Staaten Dauer: 10 Juni 2018 → 15 Juni 2018 |
Abstract
Most tandem solar cells are either two-terminal devices where the subcells are electrically connected in series or four terminal devices where each subcell is operated independently. There are trade-offs between the two integration schemes in terms of ease of fabrication, overall efficiency, and spectral sensitivity. Three-terminal (3T) tandem cells can combine the best aspects of both integration schemes if designed properly. Using a 3T design based on an interdigitated back contact (IBC) Si device with conductive front surface, combined with a wider bandgap III-V top cell, we discuss the operation of three terminal tandems in detail. We present technology computer aided design (TCAD) device physics simulations to describe trends in performance. We show that this type of 3T device can provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Energieanlagenbau und Kraftwerkstechnik
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC. Institute of Electrical and Electronics Engineers Inc., 2018. S. 2648-2650 8547611.
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Operating principles of three-terminal solar cells
AU - Warren, Emily
AU - Rienaecker, Michael
AU - Schnabel, Manuel
AU - Deceglie, Michael
AU - Peibst, Robby
AU - Tamboli, Adele
AU - Stradins, Paul
N1 - Funding Information: This work was authored by the Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office under Contract SETP-DE-EE00030299. Funding for the work at ISFH was provided by the German Federal Ministry for Economic Affairs and Energy,under grant number 324040 (project EASi). The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. Publisher Copyright: © 2018 IEEE. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2018/11/26
Y1 - 2018/11/26
N2 - Most tandem solar cells are either two-terminal devices where the subcells are electrically connected in series or four terminal devices where each subcell is operated independently. There are trade-offs between the two integration schemes in terms of ease of fabrication, overall efficiency, and spectral sensitivity. Three-terminal (3T) tandem cells can combine the best aspects of both integration schemes if designed properly. Using a 3T design based on an interdigitated back contact (IBC) Si device with conductive front surface, combined with a wider bandgap III-V top cell, we discuss the operation of three terminal tandems in detail. We present technology computer aided design (TCAD) device physics simulations to describe trends in performance. We show that this type of 3T device can provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells.
AB - Most tandem solar cells are either two-terminal devices where the subcells are electrically connected in series or four terminal devices where each subcell is operated independently. There are trade-offs between the two integration schemes in terms of ease of fabrication, overall efficiency, and spectral sensitivity. Three-terminal (3T) tandem cells can combine the best aspects of both integration schemes if designed properly. Using a 3T design based on an interdigitated back contact (IBC) Si device with conductive front surface, combined with a wider bandgap III-V top cell, we discuss the operation of three terminal tandems in detail. We present technology computer aided design (TCAD) device physics simulations to describe trends in performance. We show that this type of 3T device can provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells.
KW - simulation
KW - tandem cell
KW - TCAD
KW - three-terminal
UR - http://www.scopus.com/inward/record.url?scp=85059897381&partnerID=8YFLogxK
U2 - 10.1109/PVSC.2018.8547611
DO - 10.1109/PVSC.2018.8547611
M3 - Conference contribution
AN - SCOPUS:85059897381
SP - 2648
EP - 2650
BT - 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018
Y2 - 10 June 2018 through 15 June 2018
ER -