Details
Originalsprache | Englisch |
---|---|
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 22 Feb. 2024 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2024.
Publikation: Arbeitspapier/Preprint › Preprint
}
TY - UNPB
T1 - On zero-cycles of varieties over Laurent fields
AU - Lange, Jan
N1 - 28 pages
PY - 2024/2/22
Y1 - 2024/2/22
N2 - We generalize a recent result of Pavic--Schreieder regarding the surjectivity of the obstruction morphism defined in [PS23]. As a consequence of this result, we show that geometrically (retract) rational varieties over a Laurent field of characteristic 0, which admit a strictly semi-stable model, have trivial Chow group of zero-cycles. Our key new ingredient comes from toric geometry.
AB - We generalize a recent result of Pavic--Schreieder regarding the surjectivity of the obstruction morphism defined in [PS23]. As a consequence of this result, we show that geometrically (retract) rational varieties over a Laurent field of characteristic 0, which admit a strictly semi-stable model, have trivial Chow group of zero-cycles. Our key new ingredient comes from toric geometry.
KW - math.AG
KW - 14C25, 14M22, 14M25
M3 - Preprint
BT - On zero-cycles of varieties over Laurent fields
ER -