Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 593-630 |
Seitenumfang | 38 |
Fachzeitschrift | Complex Analysis and Operator Theory |
Jahrgang | 9 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 18 Mai 2014 |
Extern publiziert | Ja |
Abstract
Extending our results in Bauer and Vasilevski (J Funct Anal 265(11):2956–2990, 2013) the present paper gives a detailed structural analysis of a class of commutative Banach algebras Bk(h) generated by Toeplitz operators on the standard weighted Bergman spaces Aλ2(Bn) over the complex unit ball Bn in Cn. In the most general situation we explicitly determine the set of maximal ideals of Bk(h) and we describe the Gelfand transform on a dense subalgebra. As an application to the spectral theory we prove the inverse closedness of algebras Bk(h) in the full algebra of bounded operators on Aλ2(Bn) for certain choices of h. Moreover, it is remarked that Bk(h) is not semi-simple. In the case of k=(n) we explicitly describe the radical Rad Bn(h) of the algebraBn(h). This result generalizes and simplifies the characterization of Rad B2(1), which was given in Bauer and Vasilevski (Integr Equ Oper Theory 74:199–231, 2012).
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Computational Mathematics
- Informatik (insg.)
- Theoretische Informatik und Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Complex Analysis and Operator Theory, Jahrgang 9, Nr. 3, 18.05.2014, S. 593-630.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On the Structure of Commutative Banach Algebras Generated by Toeplitz Operators on the Unit Ball. Quasi-Elliptic Case. II
T2 - Gelfand theory
AU - Bauer, Wolfram
AU - Vasilevski, Nikolai
N1 - Publisher Copyright: © 2014, Springer Basel. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2014/5/18
Y1 - 2014/5/18
N2 - Extending our results in Bauer and Vasilevski (J Funct Anal 265(11):2956–2990, 2013) the present paper gives a detailed structural analysis of a class of commutative Banach algebras Bk(h) generated by Toeplitz operators on the standard weighted Bergman spaces Aλ2(Bn) over the complex unit ball Bn in Cn. In the most general situation we explicitly determine the set of maximal ideals of Bk(h) and we describe the Gelfand transform on a dense subalgebra. As an application to the spectral theory we prove the inverse closedness of algebras Bk(h) in the full algebra of bounded operators on Aλ2(Bn) for certain choices of h. Moreover, it is remarked that Bk(h) is not semi-simple. In the case of k=(n) we explicitly describe the radical Rad Bn(h) of the algebraBn(h). This result generalizes and simplifies the characterization of Rad B2(1), which was given in Bauer and Vasilevski (Integr Equ Oper Theory 74:199–231, 2012).
AB - Extending our results in Bauer and Vasilevski (J Funct Anal 265(11):2956–2990, 2013) the present paper gives a detailed structural analysis of a class of commutative Banach algebras Bk(h) generated by Toeplitz operators on the standard weighted Bergman spaces Aλ2(Bn) over the complex unit ball Bn in Cn. In the most general situation we explicitly determine the set of maximal ideals of Bk(h) and we describe the Gelfand transform on a dense subalgebra. As an application to the spectral theory we prove the inverse closedness of algebras Bk(h) in the full algebra of bounded operators on Aλ2(Bn) for certain choices of h. Moreover, it is remarked that Bk(h) is not semi-simple. In the case of k=(n) we explicitly describe the radical Rad Bn(h) of the algebraBn(h). This result generalizes and simplifies the characterization of Rad B2(1), which was given in Bauer and Vasilevski (Integr Equ Oper Theory 74:199–231, 2012).
KW - Commutative Toeplitz algebra
KW - Gelfand theory
KW - Generalized Berezin transform
KW - Weighted Bergman space
UR - http://www.scopus.com/inward/record.url?scp=84939878285&partnerID=8YFLogxK
U2 - 10.1007/s11785-014-0385-z
DO - 10.1007/s11785-014-0385-z
M3 - Article
AN - SCOPUS:84939878285
VL - 9
SP - 593
EP - 630
JO - Complex Analysis and Operator Theory
JF - Complex Analysis and Operator Theory
SN - 1661-8254
IS - 3
ER -