On the size of coset unions

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Benjamin Sambale
  • Marius Tǎrnǎuceanu

Externe Organisationen

  • Al. I. Cuza University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)979-987
Seitenumfang9
FachzeitschriftJournal of algebraic combinatorics
Jahrgang55
Ausgabenummer3
Frühes Online-Datum23 Okt. 2021
PublikationsstatusVeröffentlicht - Mai 2022

Abstract

Let g1H1, … , gnHn be cosets of subgroups H1, … , Hn of a finite group G such that g1H1∪ … ∪ gnHn≠ G. We prove that | g1H1∪ … ∪ gnHn| ≤ γn| G| where γn< 1 is a constant depending only on n. In special cases, we show that γn= (2 n- 1) / 2 n is the best possible constant with this property and we conjecture that this is generally true.

ASJC Scopus Sachgebiete

Zitieren

On the size of coset unions. / Sambale, Benjamin; Tǎrnǎuceanu, Marius.
in: Journal of algebraic combinatorics, Jahrgang 55, Nr. 3, 05.2022, S. 979-987.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Sambale, B & Tǎrnǎuceanu, M 2022, 'On the size of coset unions', Journal of algebraic combinatorics, Jg. 55, Nr. 3, S. 979-987. https://doi.org/10.1007/s10801-021-01079-x
Sambale B, Tǎrnǎuceanu M. On the size of coset unions. Journal of algebraic combinatorics. 2022 Mai;55(3):979-987. Epub 2021 Okt 23. doi: 10.1007/s10801-021-01079-x
Sambale, Benjamin ; Tǎrnǎuceanu, Marius. / On the size of coset unions. in: Journal of algebraic combinatorics. 2022 ; Jahrgang 55, Nr. 3. S. 979-987.
Download
@article{25046d9e2ff44eaa9b7123449038aee7,
title = "On the size of coset unions",
abstract = "Let g1H1, … , gnHn be cosets of subgroups H1, … , Hn of a finite group G such that g1H1∪ … ∪ gnHn≠ G. We prove that | g1H1∪ … ∪ gnHn| ≤ γn| G| where γn< 1 is a constant depending only on n. In special cases, we show that γn= (2 n- 1) / 2 n is the best possible constant with this property and we conjecture that this is generally true.",
keywords = "Conjecture, Subgroup covering, Union of cosets",
author = "Benjamin Sambale and Marius Tǎrnǎuceanu",
note = "Funding Information: We thank an anonymous reviewer for his/her valuable comments. The first author is supported by the German Research Foundation (SA 2864/1-2 and SA 2864/3-1). ",
year = "2022",
month = may,
doi = "10.1007/s10801-021-01079-x",
language = "English",
volume = "55",
pages = "979--987",
journal = "Journal of algebraic combinatorics",
issn = "0925-9899",
publisher = "Springer Netherlands",
number = "3",

}

Download

TY - JOUR

T1 - On the size of coset unions

AU - Sambale, Benjamin

AU - Tǎrnǎuceanu, Marius

N1 - Funding Information: We thank an anonymous reviewer for his/her valuable comments. The first author is supported by the German Research Foundation (SA 2864/1-2 and SA 2864/3-1).

PY - 2022/5

Y1 - 2022/5

N2 - Let g1H1, … , gnHn be cosets of subgroups H1, … , Hn of a finite group G such that g1H1∪ … ∪ gnHn≠ G. We prove that | g1H1∪ … ∪ gnHn| ≤ γn| G| where γn< 1 is a constant depending only on n. In special cases, we show that γn= (2 n- 1) / 2 n is the best possible constant with this property and we conjecture that this is generally true.

AB - Let g1H1, … , gnHn be cosets of subgroups H1, … , Hn of a finite group G such that g1H1∪ … ∪ gnHn≠ G. We prove that | g1H1∪ … ∪ gnHn| ≤ γn| G| where γn< 1 is a constant depending only on n. In special cases, we show that γn= (2 n- 1) / 2 n is the best possible constant with this property and we conjecture that this is generally true.

KW - Conjecture

KW - Subgroup covering

KW - Union of cosets

UR - http://www.scopus.com/inward/record.url?scp=85117681952&partnerID=8YFLogxK

U2 - 10.1007/s10801-021-01079-x

DO - 10.1007/s10801-021-01079-x

M3 - Article

AN - SCOPUS:85117681952

VL - 55

SP - 979

EP - 987

JO - Journal of algebraic combinatorics

JF - Journal of algebraic combinatorics

SN - 0925-9899

IS - 3

ER -