Loading [MathJax]/extensions/tex2jax.js

On the Quality Checking of Persistent Scatterer Interferometry by spatial-temporal modelling

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Organisationseinheiten

Externe Organisationen

  • Technische Universität Clausthal

Details

OriginalspracheEnglisch
Seiten (von - bis)119-131
Seitenumfang13
FachzeitschriftJournal of Applied Geodesy
Jahrgang17
Ausgabenummer2
Frühes Online-Datum28 Feb. 2023
PublikationsstatusVeröffentlicht - 25 Apr. 2023

Abstract

Today, rapid growth in infrastructure development and urbanization process increases the attention for accurate deformation monitoring on a relatively large-scale. Furthermore, such deformation monitoring is of great importance in the assessment and management of natural hazard processes like landslides, earthquakes, and floods. In this study, the Persistent Scatterer Interferometry (PSI) technique is applied using open-source synthetic aperture radar (SAR) data from the satellite Sentinel-1. It allows point-wise deformation monitoring
based on time series analysis of specific points. It also enables performing spatio-temporal area-based deformation monitoring. Currently, these data do not have a sophisticated quality assurance process to judge the significance of deformations. To obtain different quality classes of the Persistent Scatterer (PS) data points, the first step is to classify them into buildings and ground types using LoD2 building models. Next, time series analysis of the PS points is performed to model systematic and random errors. It allows estimation of the offset and the deformation rate for each point. Finally, spatio-temporal modelling of neighbourhood relations of the PS points is carried out using local geometric patches which are approximated with a mathematical model, such as, e.g., hierarchical B-Splines. Subsequently, the quality of SAR data from temporal and spatial neighbourhood relations is checked. Having an appropriate spatio-temporal quality model of the PS data, a deformation analysis is performed for areas of interest in the city of Hamburg. In the end, the results of the deformation analysis are compared with the BodenBewegungsdienst Deutschland (Ground Motion Service Germany) provided by the Federal Institute for Geosciences and Natural Resources (BGR), Germany.

Ziele für nachhaltige Entwicklung

Zitieren

On the Quality Checking of Persistent Scatterer Interferometry by spatial-temporal modelling. / Omidalizarandi, Mohammad; Mohammadivojdan, Bahareh; Alkhatib, Hamza et al.
in: Journal of Applied Geodesy, Jahrgang 17, Nr. 2, 25.04.2023, S. 119-131.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Omidalizarandi M, Mohammadivojdan B, Alkhatib H, Paffenholz JA, Neumann I. On the Quality Checking of Persistent Scatterer Interferometry by spatial-temporal modelling. Journal of Applied Geodesy. 2023 Apr 25;17(2):119-131. Epub 2023 Feb 28. doi: 10.1515/jag-2022-0043
Omidalizarandi, Mohammad ; Mohammadivojdan, Bahareh ; Alkhatib, Hamza et al. / On the Quality Checking of Persistent Scatterer Interferometry by spatial-temporal modelling. in: Journal of Applied Geodesy. 2023 ; Jahrgang 17, Nr. 2. S. 119-131.
Download
@article{43ae98f0326e48bb825866cd417d4c3c,
title = "On the Quality Checking of Persistent Scatterer Interferometry by spatial-temporal modelling",
abstract = "Today, rapid growth in infrastructure development and urbanization process increases the attention for accurate deformation monitoring on a relatively large-scale. Furthermore, such deformation monitoring is of great importance in the assessment and management of natural hazard processes like landslides, earthquakes, and floods. In this study, the Persistent Scatterer Interferometry (PSI) technique is applied using open-source synthetic aperture radar (SAR) data from the satellite Sentinel-1. It allows point-wise deformation monitoringbased on time series analysis of specific points. It also enables performing spatio-temporal area-based deformation monitoring. Currently, these data do not have a sophisticated quality assurance process to judge the significance of deformations. To obtain different quality classes of the Persistent Scatterer (PS) data points, the first step is to classify them into buildings and ground types using LoD2 building models. Next, time series analysis of the PS points is performed to model systematic and random errors. It allows estimation of the offset and the deformation rate for each point. Finally, spatio-temporal modelling of neighbourhood relations of the PS points is carried out using local geometric patches which are approximated with a mathematical model, such as, e.g., hierarchical B-Splines. Subsequently, the quality of SAR data from temporal and spatial neighbourhood relations is checked. Having an appropriate spatio-temporal quality model of the PS data, a deformation analysis is performed for areas of interest in the city of Hamburg. In the end, the results of the deformation analysis are compared with the BodenBewegungsdienst Deutschland (Ground Motion Service Germany) provided by the Federal Institute for Geosciences and Natural Resources (BGR), Germany.",
keywords = "Persistent Scatterer Interferometry (PSI), spatio-temporal, quality model, classification, robust parameter estimation, deformation analysis",
author = "Mohammad Omidalizarandi and Bahareh Mohammadivojdan and Hamza Alkhatib and Jens-Andr{\'e} Paffenholz and Ingo Neumann",
year = "2023",
month = apr,
day = "25",
doi = "10.1515/jag-2022-0043",
language = "English",
volume = "17",
pages = "119--131",
number = "2",

}

Download

TY - JOUR

T1 - On the Quality Checking of Persistent Scatterer Interferometry by spatial-temporal modelling

AU - Omidalizarandi, Mohammad

AU - Mohammadivojdan, Bahareh

AU - Alkhatib, Hamza

AU - Paffenholz, Jens-André

AU - Neumann, Ingo

PY - 2023/4/25

Y1 - 2023/4/25

N2 - Today, rapid growth in infrastructure development and urbanization process increases the attention for accurate deformation monitoring on a relatively large-scale. Furthermore, such deformation monitoring is of great importance in the assessment and management of natural hazard processes like landslides, earthquakes, and floods. In this study, the Persistent Scatterer Interferometry (PSI) technique is applied using open-source synthetic aperture radar (SAR) data from the satellite Sentinel-1. It allows point-wise deformation monitoringbased on time series analysis of specific points. It also enables performing spatio-temporal area-based deformation monitoring. Currently, these data do not have a sophisticated quality assurance process to judge the significance of deformations. To obtain different quality classes of the Persistent Scatterer (PS) data points, the first step is to classify them into buildings and ground types using LoD2 building models. Next, time series analysis of the PS points is performed to model systematic and random errors. It allows estimation of the offset and the deformation rate for each point. Finally, spatio-temporal modelling of neighbourhood relations of the PS points is carried out using local geometric patches which are approximated with a mathematical model, such as, e.g., hierarchical B-Splines. Subsequently, the quality of SAR data from temporal and spatial neighbourhood relations is checked. Having an appropriate spatio-temporal quality model of the PS data, a deformation analysis is performed for areas of interest in the city of Hamburg. In the end, the results of the deformation analysis are compared with the BodenBewegungsdienst Deutschland (Ground Motion Service Germany) provided by the Federal Institute for Geosciences and Natural Resources (BGR), Germany.

AB - Today, rapid growth in infrastructure development and urbanization process increases the attention for accurate deformation monitoring on a relatively large-scale. Furthermore, such deformation monitoring is of great importance in the assessment and management of natural hazard processes like landslides, earthquakes, and floods. In this study, the Persistent Scatterer Interferometry (PSI) technique is applied using open-source synthetic aperture radar (SAR) data from the satellite Sentinel-1. It allows point-wise deformation monitoringbased on time series analysis of specific points. It also enables performing spatio-temporal area-based deformation monitoring. Currently, these data do not have a sophisticated quality assurance process to judge the significance of deformations. To obtain different quality classes of the Persistent Scatterer (PS) data points, the first step is to classify them into buildings and ground types using LoD2 building models. Next, time series analysis of the PS points is performed to model systematic and random errors. It allows estimation of the offset and the deformation rate for each point. Finally, spatio-temporal modelling of neighbourhood relations of the PS points is carried out using local geometric patches which are approximated with a mathematical model, such as, e.g., hierarchical B-Splines. Subsequently, the quality of SAR data from temporal and spatial neighbourhood relations is checked. Having an appropriate spatio-temporal quality model of the PS data, a deformation analysis is performed for areas of interest in the city of Hamburg. In the end, the results of the deformation analysis are compared with the BodenBewegungsdienst Deutschland (Ground Motion Service Germany) provided by the Federal Institute for Geosciences and Natural Resources (BGR), Germany.

KW - Persistent Scatterer Interferometry (PSI)

KW - spatio-temporal

KW - quality model

KW - classification

KW - robust parameter estimation

KW - deformation analysis

UR - http://www.scopus.com/inward/record.url?scp=85149311375&partnerID=8YFLogxK

U2 - 10.1515/jag-2022-0043

DO - 10.1515/jag-2022-0043

M3 - Article

VL - 17

SP - 119

EP - 131

JO - Journal of Applied Geodesy

JF - Journal of Applied Geodesy

SN - 1862-9016

IS - 2

ER -

Von denselben Autoren