On the parabolicity of the Muskat problem: Well-Posedness, Fingering, and Stability Results

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)193-218
Seitenumfang26
FachzeitschriftZeitschrift für Analysis und ihre Anwendungen
Jahrgang30
Ausgabenummer2
PublikationsstatusVeröffentlicht - 8 Apr. 2011

Abstract

We study the Muskat problem in a periodic geometry and incorporate capillary as well as gravity effects in the modelling. The problem is rewritten as an abstract evolution equation. By analysing this evolution equation we prove wellposedness of the problem and we establish exponential stability of some flat equilibrium. Using bifurcation theory we also find finger shaped steady-states which are all unstable.

ASJC Scopus Sachgebiete

Zitieren

On the parabolicity of the Muskat problem: Well-Posedness, Fingering, and Stability Results. / Escher, Joachim; Matioc, Bogdan-Vasile.
in: Zeitschrift für Analysis und ihre Anwendungen, Jahrgang 30, Nr. 2, 08.04.2011, S. 193-218.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{1a4eede3c7e440789e1366fba85dda95,
title = "On the parabolicity of the Muskat problem: Well-Posedness, Fingering, and Stability Results",
abstract = "We study the Muskat problem in a periodic geometry and incorporate capillary as well as gravity effects in the modelling. The problem is rewritten as an abstract evolution equation. By analysing this evolution equation we prove wellposedness of the problem and we establish exponential stability of some flat equilibrium. Using bifurcation theory we also find finger shaped steady-states which are all unstable.",
keywords = "Classical solution, Stability, Steady-state solutions",
author = "Joachim Escher and Bogdan-Vasile Matioc",
year = "2011",
month = apr,
day = "8",
doi = "10.4171/ZAA/1431",
language = "English",
volume = "30",
pages = "193--218",
journal = "Zeitschrift f{\"u}r Analysis und ihre Anwendungen",
issn = "0232-2064",
publisher = "Heldermann Verlag",
number = "2",

}

Download

TY - JOUR

T1 - On the parabolicity of the Muskat problem

T2 - Well-Posedness, Fingering, and Stability Results

AU - Escher, Joachim

AU - Matioc, Bogdan-Vasile

PY - 2011/4/8

Y1 - 2011/4/8

N2 - We study the Muskat problem in a periodic geometry and incorporate capillary as well as gravity effects in the modelling. The problem is rewritten as an abstract evolution equation. By analysing this evolution equation we prove wellposedness of the problem and we establish exponential stability of some flat equilibrium. Using bifurcation theory we also find finger shaped steady-states which are all unstable.

AB - We study the Muskat problem in a periodic geometry and incorporate capillary as well as gravity effects in the modelling. The problem is rewritten as an abstract evolution equation. By analysing this evolution equation we prove wellposedness of the problem and we establish exponential stability of some flat equilibrium. Using bifurcation theory we also find finger shaped steady-states which are all unstable.

KW - Classical solution

KW - Stability

KW - Steady-state solutions

UR - http://www.scopus.com/inward/record.url?scp=79953645127&partnerID=8YFLogxK

U2 - 10.4171/ZAA/1431

DO - 10.4171/ZAA/1431

M3 - Article

AN - SCOPUS:79953645127

VL - 30

SP - 193

EP - 218

JO - Zeitschrift für Analysis und ihre Anwendungen

JF - Zeitschrift für Analysis und ihre Anwendungen

SN - 0232-2064

IS - 2

ER -

Von denselben Autoren