Loading [MathJax]/extensions/tex2jax.js

On the number of distributive lattices

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Marcel Ernë
  • Jobst Heitzig
  • Jürgen Reinhold

Details

OriginalspracheEnglisch
Seiten (von - bis)1-23
Seitenumfang23
FachzeitschriftElectronic Journal of Combinatorics
Jahrgang9
Ausgabenummer1 R
PublikationsstatusVeröffentlicht - 1 Apr. 2002

Abstract

We investigate the numbers dk of all (isomorphism classes of) distributive lattices with k elements, or, equivalently, of (unlabeled) posets with k antichains. Closely related and useful for combinatorial identities and inequalities are the numbers vk of vertically indecomposable distributive lattices of size k. We present the explicit values of the numbers dk and vk for k < 50 and prove the following exponential bounds: 1.67k < vk lt; 2.33k and 1.84k < dk < 2.39k (k ≥ k 0). Important tools are (i) an algorithm coding all unlabeled distributive lattices of height n and size k by certain integer sequences 0 = z1 ≤ ⋯ ≤ zn ≤ k - 2, and (ii) a "canonical 2-decomposition" of ordinally indecomposable posets into "2-indecomposable" canonical summands.

ASJC Scopus Sachgebiete

Zitieren

On the number of distributive lattices. / Ernë, Marcel; Heitzig, Jobst; Reinhold, Jürgen.
in: Electronic Journal of Combinatorics, Jahrgang 9, Nr. 1 R, 01.04.2002, S. 1-23.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Ernë, M, Heitzig, J & Reinhold, J 2002, 'On the number of distributive lattices', Electronic Journal of Combinatorics, Jg. 9, Nr. 1 R, S. 1-23. https://doi.org/10.37236/1641
Ernë M, Heitzig J, Reinhold J. On the number of distributive lattices. Electronic Journal of Combinatorics. 2002 Apr 1;9(1 R):1-23. doi: 10.37236/1641
Ernë, Marcel ; Heitzig, Jobst ; Reinhold, Jürgen. / On the number of distributive lattices. in: Electronic Journal of Combinatorics. 2002 ; Jahrgang 9, Nr. 1 R. S. 1-23.
Download
@article{b869a215b068400b99049af4caa9a26b,
title = "On the number of distributive lattices",
abstract = "We investigate the numbers dk of all (isomorphism classes of) distributive lattices with k elements, or, equivalently, of (unlabeled) posets with k antichains. Closely related and useful for combinatorial identities and inequalities are the numbers vk of vertically indecomposable distributive lattices of size k. We present the explicit values of the numbers dk and vk for k < 50 and prove the following exponential bounds: 1.67k < vk lt; 2.33k and 1.84k < dk < 2.39k (k ≥ k 0). Important tools are (i) an algorithm coding all unlabeled distributive lattices of height n and size k by certain integer sequences 0 = z1 ≤ ⋯ ≤ zn ≤ k - 2, and (ii) a {"}canonical 2-decomposition{"} of ordinally indecomposable posets into {"}2-indecomposable{"} canonical summands.",
keywords = "Canonical poset, Distributive lattice, Ordinal (vertical) decomposition",
author = "Marcel Ern{\"e} and Jobst Heitzig and J{\"u}rgen Reinhold",
year = "2002",
month = apr,
day = "1",
doi = "10.37236/1641",
language = "English",
volume = "9",
pages = "1--23",
journal = "Electronic Journal of Combinatorics",
issn = "1077-8926",
publisher = "Electronic Journal of Combinatorics",
number = "1 R",

}

Download

TY - JOUR

T1 - On the number of distributive lattices

AU - Ernë, Marcel

AU - Heitzig, Jobst

AU - Reinhold, Jürgen

PY - 2002/4/1

Y1 - 2002/4/1

N2 - We investigate the numbers dk of all (isomorphism classes of) distributive lattices with k elements, or, equivalently, of (unlabeled) posets with k antichains. Closely related and useful for combinatorial identities and inequalities are the numbers vk of vertically indecomposable distributive lattices of size k. We present the explicit values of the numbers dk and vk for k < 50 and prove the following exponential bounds: 1.67k < vk lt; 2.33k and 1.84k < dk < 2.39k (k ≥ k 0). Important tools are (i) an algorithm coding all unlabeled distributive lattices of height n and size k by certain integer sequences 0 = z1 ≤ ⋯ ≤ zn ≤ k - 2, and (ii) a "canonical 2-decomposition" of ordinally indecomposable posets into "2-indecomposable" canonical summands.

AB - We investigate the numbers dk of all (isomorphism classes of) distributive lattices with k elements, or, equivalently, of (unlabeled) posets with k antichains. Closely related and useful for combinatorial identities and inequalities are the numbers vk of vertically indecomposable distributive lattices of size k. We present the explicit values of the numbers dk and vk for k < 50 and prove the following exponential bounds: 1.67k < vk lt; 2.33k and 1.84k < dk < 2.39k (k ≥ k 0). Important tools are (i) an algorithm coding all unlabeled distributive lattices of height n and size k by certain integer sequences 0 = z1 ≤ ⋯ ≤ zn ≤ k - 2, and (ii) a "canonical 2-decomposition" of ordinally indecomposable posets into "2-indecomposable" canonical summands.

KW - Canonical poset

KW - Distributive lattice

KW - Ordinal (vertical) decomposition

UR - http://www.scopus.com/inward/record.url?scp=4043176865&partnerID=8YFLogxK

U2 - 10.37236/1641

DO - 10.37236/1641

M3 - Article

AN - SCOPUS:4043176865

VL - 9

SP - 1

EP - 23

JO - Electronic Journal of Combinatorics

JF - Electronic Journal of Combinatorics

SN - 1077-8926

IS - 1 R

ER -