Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 237-253 |
Seitenumfang | 17 |
Fachzeitschrift | Rendiconti lincei: Matematica e applicazioni |
Jahrgang | 29 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 26 Apr. 2018 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Rendiconti lincei: Matematica e applicazioni, Jahrgang 29, Nr. 2, 26.04.2018, S. 237-253.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On the local negativity of surfaces with numerically trivial canonical class
AU - Laface, Roberto
AU - Pokora, Piotr
PY - 2018/4/26
Y1 - 2018/4/26
N2 - In this note we study the local negativity for certain configurations of smooth rational curves in smooth surfaces with numerically trivial canonical class. We show that for such rational curves there is a bound for the so-called local Harbourne constants, which measure the local negativity phenomenon. Moreover, we provide explicit examples of interesting configurations of rational curves in some K3 and Enriques surfaces and compute their local Harbourne constants.
AB - In this note we study the local negativity for certain configurations of smooth rational curves in smooth surfaces with numerically trivial canonical class. We show that for such rational curves there is a bound for the so-called local Harbourne constants, which measure the local negativity phenomenon. Moreover, we provide explicit examples of interesting configurations of rational curves in some K3 and Enriques surfaces and compute their local Harbourne constants.
UR - http://www.scopus.com/inward/record.url?scp=85046654761&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1512.06022
DO - 10.48550/arXiv.1512.06022
M3 - Article
AN - SCOPUS:85046654761
VL - 29
SP - 237
EP - 253
JO - Rendiconti lincei: Matematica e applicazioni
JF - Rendiconti lincei: Matematica e applicazioni
SN - 1120-6330
IS - 2
ER -