On the local negativity of surfaces with numerically trivial canonical class

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Roberto Laface
  • Piotr Pokora

Organisationseinheiten

Externe Organisationen

  • Johannes Gutenberg-Universität Mainz
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)237-253
Seitenumfang17
FachzeitschriftRendiconti lincei: Matematica e applicazioni
Jahrgang29
Ausgabenummer2
PublikationsstatusVeröffentlicht - 26 Apr. 2018

Abstract

In this note we study the local negativity for certain configurations of smooth rational curves in smooth surfaces with numerically trivial canonical class. We show that for such rational curves there is a bound for the so-called local Harbourne constants, which measure the local negativity phenomenon. Moreover, we provide explicit examples of interesting configurations of rational curves in some K3 and Enriques surfaces and compute their local Harbourne constants.

Zitieren

On the local negativity of surfaces with numerically trivial canonical class. / Laface, Roberto; Pokora, Piotr.
in: Rendiconti lincei: Matematica e applicazioni, Jahrgang 29, Nr. 2, 26.04.2018, S. 237-253.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Laface R, Pokora P. On the local negativity of surfaces with numerically trivial canonical class. Rendiconti lincei: Matematica e applicazioni. 2018 Apr 26;29(2):237-253. doi: 10.48550/arXiv.1512.06022, 10.4171/rlm/803
Laface, Roberto ; Pokora, Piotr. / On the local negativity of surfaces with numerically trivial canonical class. in: Rendiconti lincei: Matematica e applicazioni. 2018 ; Jahrgang 29, Nr. 2. S. 237-253.
Download
@article{76d81aadd2104aca80338c19644b46e1,
title = "On the local negativity of surfaces with numerically trivial canonical class",
abstract = "In this note we study the local negativity for certain configurations of smooth rational curves in smooth surfaces with numerically trivial canonical class. We show that for such rational curves there is a bound for the so-called local Harbourne constants, which measure the local negativity phenomenon. Moreover, we provide explicit examples of interesting configurations of rational curves in some K3 and Enriques surfaces and compute their local Harbourne constants.",
author = "Roberto Laface and Piotr Pokora",
year = "2018",
month = apr,
day = "26",
doi = "10.48550/arXiv.1512.06022",
language = "English",
volume = "29",
pages = "237--253",
journal = "Rendiconti lincei: Matematica e applicazioni",
issn = "1120-6330",
publisher = "European Mathematical Society Publishing House",
number = "2",

}

Download

TY - JOUR

T1 - On the local negativity of surfaces with numerically trivial canonical class

AU - Laface, Roberto

AU - Pokora, Piotr

PY - 2018/4/26

Y1 - 2018/4/26

N2 - In this note we study the local negativity for certain configurations of smooth rational curves in smooth surfaces with numerically trivial canonical class. We show that for such rational curves there is a bound for the so-called local Harbourne constants, which measure the local negativity phenomenon. Moreover, we provide explicit examples of interesting configurations of rational curves in some K3 and Enriques surfaces and compute their local Harbourne constants.

AB - In this note we study the local negativity for certain configurations of smooth rational curves in smooth surfaces with numerically trivial canonical class. We show that for such rational curves there is a bound for the so-called local Harbourne constants, which measure the local negativity phenomenon. Moreover, we provide explicit examples of interesting configurations of rational curves in some K3 and Enriques surfaces and compute their local Harbourne constants.

UR - http://www.scopus.com/inward/record.url?scp=85046654761&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1512.06022

DO - 10.48550/arXiv.1512.06022

M3 - Article

AN - SCOPUS:85046654761

VL - 29

SP - 237

EP - 253

JO - Rendiconti lincei: Matematica e applicazioni

JF - Rendiconti lincei: Matematica e applicazioni

SN - 1120-6330

IS - 2

ER -