Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 106308 |
Fachzeitschrift | Journal of Pure and Applied Algebra |
Jahrgang | 224 |
Ausgabenummer | 7 |
Frühes Online-Datum | 7 Jan. 2020 |
Publikationsstatus | Veröffentlicht - Juli 2020 |
Extern publiziert | Ja |
Abstract
We call an element of a Coxeter group a parabolic quasi-Coxeter element if it has a reduced decomposition into a product of reflections that generate a parabolic subgroup. We show that for a parabolic quasi-Coxeter element in an affine Coxeter group the Hurwitz action on its set of reduced decompositions into a product of reflections is transitive.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Pure and Applied Algebra, Jahrgang 224, Nr. 7, 106308, 07.2020.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On the Hurwitz action in affine Coxeter groups
AU - Wegener, Patrick
PY - 2020/7
Y1 - 2020/7
N2 - We call an element of a Coxeter group a parabolic quasi-Coxeter element if it has a reduced decomposition into a product of reflections that generate a parabolic subgroup. We show that for a parabolic quasi-Coxeter element in an affine Coxeter group the Hurwitz action on its set of reduced decompositions into a product of reflections is transitive.
AB - We call an element of a Coxeter group a parabolic quasi-Coxeter element if it has a reduced decomposition into a product of reflections that generate a parabolic subgroup. We show that for a parabolic quasi-Coxeter element in an affine Coxeter group the Hurwitz action on its set of reduced decompositions into a product of reflections is transitive.
KW - Coxeter groups
KW - Hurwitz action
KW - Reflection decompositions
UR - http://www.scopus.com/inward/record.url?scp=85077722093&partnerID=8YFLogxK
U2 - 10.1016/j.jpaa.2020.106308
DO - 10.1016/j.jpaa.2020.106308
M3 - Article
VL - 224
JO - Journal of Pure and Applied Algebra
JF - Journal of Pure and Applied Algebra
SN - 0022-4049
IS - 7
M1 - 106308
ER -