Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 17-25 |
Seitenumfang | 9 |
Fachzeitschrift | Differential Geometry and its Application |
Jahrgang | 23 |
Ausgabenummer | 1 |
Frühes Online-Datum | 13 Apr. 2005 |
Publikationsstatus | Veröffentlicht - Juli 2005 |
Extern publiziert | Ja |
Abstract
We give a criterion for the non-degeneracy of the symmetric tensor field on the moduli space of symplectic structures that was introduced in [J. Fricke, L. Habermann, Manuscripta Math. 109 (2002) 405-417] and apply it to nilmanifolds of dimension 6.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Geometrie und Topologie
- Informatik (insg.)
- Theoretische Informatik und Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Differential Geometry and its Application, Jahrgang 23, Nr. 1, 07.2005, S. 17-25.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On the existence of pseudo-Riemannian metrics on the moduli space of symplectic structures
AU - Fricke, Jan
AU - Habermann, Katharina
AU - Habermann, Lutz
PY - 2005/7
Y1 - 2005/7
N2 - We give a criterion for the non-degeneracy of the symmetric tensor field on the moduli space of symplectic structures that was introduced in [J. Fricke, L. Habermann, Manuscripta Math. 109 (2002) 405-417] and apply it to nilmanifolds of dimension 6.
AB - We give a criterion for the non-degeneracy of the symmetric tensor field on the moduli space of symplectic structures that was introduced in [J. Fricke, L. Habermann, Manuscripta Math. 109 (2002) 405-417] and apply it to nilmanifolds of dimension 6.
KW - Moduli space
KW - Symplectic Hodge theory
KW - Symplectic structures
UR - http://www.scopus.com/inward/record.url?scp=20544470401&partnerID=8YFLogxK
U2 - 10.1016/j.difgeo.2005.03.002
DO - 10.1016/j.difgeo.2005.03.002
M3 - Article
AN - SCOPUS:20544470401
VL - 23
SP - 17
EP - 25
JO - Differential Geometry and its Application
JF - Differential Geometry and its Application
SN - 0926-2245
IS - 1
ER -