Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 657-703 |
Fachzeitschrift | Moscow Mathematical Journal |
Jahrgang | 22 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - Okt. 2022 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Moscow Mathematical Journal, Jahrgang 22, Nr. 4, 10.2022, S. 657-703.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On the cone of effective surfaces on \(\overline{\mathcal A}_3\)
AU - Hulek, Klaus
AU - Grushevsky, Samuel
PY - 2022/10
Y1 - 2022/10
N2 - We determine five extremal effective rays of the four-dimensional cone of effective surfaces on the toroidal compactification \(\overline{\mathcal A}_3\) of the moduli space \({\mathcal A}_3\) of complex principally polarized abelian threefolds, and we conjecture that the cone of effective surfaces is generated by these surfaces. As the surfaces we define can be defined in any genus \(g\ge 3\), we further conjecture that they generate the cone of effective surfaces on the perfect cone toroidal compactification of \({\mathcal A}_g\) for any \(g\ge 3\).
AB - We determine five extremal effective rays of the four-dimensional cone of effective surfaces on the toroidal compactification \(\overline{\mathcal A}_3\) of the moduli space \({\mathcal A}_3\) of complex principally polarized abelian threefolds, and we conjecture that the cone of effective surfaces is generated by these surfaces. As the surfaces we define can be defined in any genus \(g\ge 3\), we further conjecture that they generate the cone of effective surfaces on the perfect cone toroidal compactification of \({\mathcal A}_g\) for any \(g\ge 3\).
KW - math.AG
M3 - Article
VL - 22
SP - 657
EP - 703
JO - Moscow Mathematical Journal
JF - Moscow Mathematical Journal
SN - 1609-3321
IS - 4
ER -