Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1881-1899 |
Seitenumfang | 19 |
Fachzeitschrift | Journal of the London Mathematical Society |
Jahrgang | 107 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 3 Mai 2023 |
Abstract
Let (Formula presented.) be a Godeaux surface and (Formula presented.) be its universal cover. We show that the pullback map (Formula presented.) is injective if (Formula presented.). Our arguments rely on a degeneration technique that also applies to other examples.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of the London Mathematical Society, Jahrgang 107, Nr. 5, 03.05.2023, S. 1881-1899.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On the Brauer group of a generic Godeaux surface
AU - Alexandrou, Theodosis
N1 - Funding Information: I am grateful to my supervisor Stefan Schreieder for many helpful comments and discussions concerning this work. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement Number: 948066.
PY - 2023/5/3
Y1 - 2023/5/3
N2 - Let (Formula presented.) be a Godeaux surface and (Formula presented.) be its universal cover. We show that the pullback map (Formula presented.) is injective if (Formula presented.). Our arguments rely on a degeneration technique that also applies to other examples.
AB - Let (Formula presented.) be a Godeaux surface and (Formula presented.) be its universal cover. We show that the pullback map (Formula presented.) is injective if (Formula presented.). Our arguments rely on a degeneration technique that also applies to other examples.
UR - http://www.scopus.com/inward/record.url?scp=85148378929&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2207.08042
DO - 10.48550/arXiv.2207.08042
M3 - Article
AN - SCOPUS:85148378929
VL - 107
SP - 1881
EP - 1899
JO - Journal of the London Mathematical Society
JF - Journal of the London Mathematical Society
SN - 0024-6107
IS - 5
ER -