On redundant Sylow subgroups

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Benjamin Sambale
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1-9
Seitenumfang9
FachzeitschriftJournal of algebra
Jahrgang650
Frühes Online-Datum10 Apr. 2024
PublikationsstatusVeröffentlicht - 15 Juli 2024

Abstract

A Sylow p-subgroup P of a finite group G is called redundant if every p-element of G lies in a Sylow subgroup different from P. Generalizing a recent theorem of Maróti–Martínez–Moretó, we show that for every non-cyclic p-group P there exists a solvable group G such that P is redundant in G. Moreover, we answer several open questions raised by Maróti–Martínez–Moretó.

ASJC Scopus Sachgebiete

Zitieren

On redundant Sylow subgroups. / Sambale, Benjamin.
in: Journal of algebra, Jahrgang 650, 15.07.2024, S. 1-9.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Sambale B. On redundant Sylow subgroups. Journal of algebra. 2024 Jul 15;650:1-9. Epub 2024 Apr 10. doi: 10.48550/arXiv.2311.06931, 10.1016/j.jalgebra.2024.04.002
Sambale, Benjamin. / On redundant Sylow subgroups. in: Journal of algebra. 2024 ; Jahrgang 650. S. 1-9.
Download
@article{ba99ece4e29441ada8065541502d7748,
title = "On redundant Sylow subgroups",
abstract = "A Sylow p-subgroup P of a finite group G is called redundant if every p-element of G lies in a Sylow subgroup different from P. Generalizing a recent theorem of Mar{\'o}ti–Mart{\'i}nez–Moret{\'o}, we show that for every non-cyclic p-group P there exists a solvable group G such that P is redundant in G. Moreover, we answer several open questions raised by Mar{\'o}ti–Mart{\'i}nez–Moret{\'o}.",
keywords = "Covering p-elements, Sylow subgroups",
author = "Benjamin Sambale",
year = "2024",
month = jul,
day = "15",
doi = "10.48550/arXiv.2311.06931",
language = "English",
volume = "650",
pages = "1--9",
journal = "Journal of algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",

}

Download

TY - JOUR

T1 - On redundant Sylow subgroups

AU - Sambale, Benjamin

PY - 2024/7/15

Y1 - 2024/7/15

N2 - A Sylow p-subgroup P of a finite group G is called redundant if every p-element of G lies in a Sylow subgroup different from P. Generalizing a recent theorem of Maróti–Martínez–Moretó, we show that for every non-cyclic p-group P there exists a solvable group G such that P is redundant in G. Moreover, we answer several open questions raised by Maróti–Martínez–Moretó.

AB - A Sylow p-subgroup P of a finite group G is called redundant if every p-element of G lies in a Sylow subgroup different from P. Generalizing a recent theorem of Maróti–Martínez–Moretó, we show that for every non-cyclic p-group P there exists a solvable group G such that P is redundant in G. Moreover, we answer several open questions raised by Maróti–Martínez–Moretó.

KW - Covering p-elements

KW - Sylow subgroups

UR - http://www.scopus.com/inward/record.url?scp=85190160171&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2311.06931

DO - 10.48550/arXiv.2311.06931

M3 - Article

AN - SCOPUS:85190160171

VL - 650

SP - 1

EP - 9

JO - Journal of algebra

JF - Journal of algebra

SN - 0021-8693

ER -