Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Combinatorial Structures in Algebra and Geometry |
Untertitel | NSA 26, Constanța, Romania, August 26–September 1, 2018 |
Herausgeber/-innen | Dumitru I. Stamate, Tomasz Szemberg |
Erscheinungsort | Cham |
Herausgeber (Verlag) | Springer Nature Switzerland AG |
Seiten | 95-114 |
Seitenumfang | 20 |
Band | 331 |
ISBN (elektronisch) | 978-3-030-52111-0 |
ISBN (Print) | 978-3-030-52110-3 |
Publikationsstatus | Veröffentlicht - 2 Sept. 2020 |
Veranstaltung | 26th National School on Algebra, NSA 2018 - Constanta, Rumänien Dauer: 26 Aug. 2018 → 1 Sept. 2018 |
Publikationsreihe
Name | Springer Proceedings in Mathematics and Statistics |
---|---|
Band | 331 |
ISSN (Print) | 2194-1009 |
ISSN (elektronisch) | 2194-1017 |
Abstract
Stanley (1986) introduced the order polytope and chain polytope of a partially ordered set and showed that they are related by a piecewise-linear homeomorphism. In this paper we view order and chain polytopes as instances of distributive and anti-blocking polytopes, respectively. Both these classes of polytopes are defined in terms of the componentwise partial order on. We generalize Stanley’s PL-homeomorphism to a large class of distributive polyhedra using infinite walks in marked networks.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Combinatorial Structures in Algebra and Geometry: NSA 26, Constanța, Romania, August 26–September 1, 2018. Hrsg. / Dumitru I. Stamate; Tomasz Szemberg. Band 331 Cham: Springer Nature Switzerland AG, 2020. S. 95-114 (Springer Proceedings in Mathematics and Statistics; Band 331).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - On Piecewise-Linear Homeomorphisms Between Distributive and Anti-blocking Polyhedra
AU - Pegel, Christoph
AU - Sanyal, Raman
N1 - Publisher Copyright: © 2020, Springer Nature Switzerland AG.
PY - 2020/9/2
Y1 - 2020/9/2
N2 - Stanley (1986) introduced the order polytope and chain polytope of a partially ordered set and showed that they are related by a piecewise-linear homeomorphism. In this paper we view order and chain polytopes as instances of distributive and anti-blocking polytopes, respectively. Both these classes of polytopes are defined in terms of the componentwise partial order on. We generalize Stanley’s PL-homeomorphism to a large class of distributive polyhedra using infinite walks in marked networks.
AB - Stanley (1986) introduced the order polytope and chain polytope of a partially ordered set and showed that they are related by a piecewise-linear homeomorphism. In this paper we view order and chain polytopes as instances of distributive and anti-blocking polytopes, respectively. Both these classes of polytopes are defined in terms of the componentwise partial order on. We generalize Stanley’s PL-homeomorphism to a large class of distributive polyhedra using infinite walks in marked networks.
KW - Anti-blocking polyhedra
KW - Chain polytopes
KW - Distributive polyhedra
KW - Marked networks
KW - Order polytopes
KW - Piecewise-linear maps
UR - http://www.scopus.com/inward/record.url?scp=85091343326&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1911.12090
DO - 10.48550/arXiv.1911.12090
M3 - Conference contribution
SN - 978-3-030-52110-3
VL - 331
T3 - Springer Proceedings in Mathematics and Statistics
SP - 95
EP - 114
BT - Combinatorial Structures in Algebra and Geometry
A2 - Stamate, Dumitru I.
A2 - Szemberg, Tomasz
PB - Springer Nature Switzerland AG
CY - Cham
T2 - 26th National School on Algebra, NSA 2018
Y2 - 26 August 2018 through 1 September 2018
ER -