On Farkas' lemma and related propositions in BISH

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Josef Berger
  • Gregor Svindland

Externe Organisationen

  • Ludwig-Maximilians-Universität München (LMU)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer103059
FachzeitschriftAnnals of pure and applied logic
Jahrgang173
Ausgabenummer2
Frühes Online-Datum27 Okt. 2021
PublikationsstatusVeröffentlicht - Feb. 2022

Abstract

In this paper we analyse in the framework of constructive mathematics (BISH) the validity of Farkas' lemma and related propositions, namely the Fredholm alternative for solvability of systems of linear equations, optimality criteria in linear programming, Stiemke's lemma and the Superhedging Duality from mathematical finance, and von Neumann's minimax theorem with application to constructive game theory.

ASJC Scopus Sachgebiete

Zitieren

On Farkas' lemma and related propositions in BISH. / Berger, Josef; Svindland, Gregor.
in: Annals of pure and applied logic, Jahrgang 173, Nr. 2, 103059, 02.2022.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Berger J, Svindland G. On Farkas' lemma and related propositions in BISH. Annals of pure and applied logic. 2022 Feb;173(2):103059. Epub 2021 Okt 27. doi: 10.1016/j.apal.2021.103059
Berger, Josef ; Svindland, Gregor. / On Farkas' lemma and related propositions in BISH. in: Annals of pure and applied logic. 2022 ; Jahrgang 173, Nr. 2.
Download
@article{145923fb327244518a4849df02fb2d08,
title = "On Farkas' lemma and related propositions in BISH",
abstract = "In this paper we analyse in the framework of constructive mathematics (BISH) the validity of Farkas' lemma and related propositions, namely the Fredholm alternative for solvability of systems of linear equations, optimality criteria in linear programming, Stiemke's lemma and the Superhedging Duality from mathematical finance, and von Neumann's minimax theorem with application to constructive game theory.",
keywords = "Constructive game theory, Constructive mathematics, Farkas' lemma, Fredholm alternative, Stiemke's lemma, Superhedging Duality",
author = "Josef Berger and Gregor Svindland",
year = "2022",
month = feb,
doi = "10.1016/j.apal.2021.103059",
language = "English",
volume = "173",
journal = "Annals of pure and applied logic",
issn = "0003-4843",
publisher = "Elsevier",
number = "2",

}

Download

TY - JOUR

T1 - On Farkas' lemma and related propositions in BISH

AU - Berger, Josef

AU - Svindland, Gregor

PY - 2022/2

Y1 - 2022/2

N2 - In this paper we analyse in the framework of constructive mathematics (BISH) the validity of Farkas' lemma and related propositions, namely the Fredholm alternative for solvability of systems of linear equations, optimality criteria in linear programming, Stiemke's lemma and the Superhedging Duality from mathematical finance, and von Neumann's minimax theorem with application to constructive game theory.

AB - In this paper we analyse in the framework of constructive mathematics (BISH) the validity of Farkas' lemma and related propositions, namely the Fredholm alternative for solvability of systems of linear equations, optimality criteria in linear programming, Stiemke's lemma and the Superhedging Duality from mathematical finance, and von Neumann's minimax theorem with application to constructive game theory.

KW - Constructive game theory

KW - Constructive mathematics

KW - Farkas' lemma

KW - Fredholm alternative

KW - Stiemke's lemma

KW - Superhedging Duality

UR - http://www.scopus.com/inward/record.url?scp=85118585369&partnerID=8YFLogxK

U2 - 10.1016/j.apal.2021.103059

DO - 10.1016/j.apal.2021.103059

M3 - Article

VL - 173

JO - Annals of pure and applied logic

JF - Annals of pure and applied logic

SN - 0003-4843

IS - 2

M1 - 103059

ER -