Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | e2 |
Fachzeitschrift | Forum of Mathematics, Sigma |
Jahrgang | 13 |
Frühes Online-Datum | 24 Nov. 2023 |
Publikationsstatus | Veröffentlicht - 20 Jan. 2025 |
Abstract
We exhibit large families of K3 surfaces with real multiplication, both abstractly, using lattice theory, the Torelli theorem and the surjectivity of the period map, as well as explicitly, using dihedral covers and isogenies.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Theoretische Informatik
- Mathematik (insg.)
- Algebra und Zahlentheorie
- Mathematik (insg.)
- Statistik und Wahrscheinlichkeit
- Mathematik (insg.)
- Mathematische Physik
- Mathematik (insg.)
- Geometrie und Topologie
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
- Mathematik (insg.)
- Computational Mathematics
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Forum of Mathematics, Sigma, Jahrgang 13, e2, 20.01.2025.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On families of K3 surfaces with real multiplication
AU - Van Geemen, Bert
AU - Schütt, Matthias
N1 - Publisher Copyright: © The Author(s), 2025. Published by Cambridge University Press.
PY - 2025/1/20
Y1 - 2025/1/20
N2 - We exhibit large families of K3 surfaces with real multiplication, both abstractly, using lattice theory, the Torelli theorem and the surjectivity of the period map, as well as explicitly, using dihedral covers and isogenies.
AB - We exhibit large families of K3 surfaces with real multiplication, both abstractly, using lattice theory, the Torelli theorem and the surjectivity of the period map, as well as explicitly, using dihedral covers and isogenies.
UR - http://www.scopus.com/inward/record.url?scp=85216214380&partnerID=8YFLogxK
U2 - 10.1017/fms.2024.146
DO - 10.1017/fms.2024.146
M3 - Article
AN - SCOPUS:85216214380
VL - 13
JO - Forum of Mathematics, Sigma
JF - Forum of Mathematics, Sigma
M1 - e2
ER -