Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 91-102 |
Seitenumfang | 12 |
Fachzeitschrift | Analysis (Germany) |
Jahrgang | 31 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 1 Jan. 2011 |
Abstract
In this short note we show that in codimension one all homogeneous algebraic selfsimilar solutions of the mean curvature flow are either algebraic minimal hypersurfaces or belong to the class of well known self-shrinking quadrics.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Numerische Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Analysis (Germany), Jahrgang 31, Nr. 1, 01.01.2011, S. 91-102.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On algebraic selfsimilar solutions of the mean curvature flow
AU - Smoczyk, Knut
PY - 2011/1/1
Y1 - 2011/1/1
N2 - In this short note we show that in codimension one all homogeneous algebraic selfsimilar solutions of the mean curvature flow are either algebraic minimal hypersurfaces or belong to the class of well known self-shrinking quadrics.
AB - In this short note we show that in codimension one all homogeneous algebraic selfsimilar solutions of the mean curvature flow are either algebraic minimal hypersurfaces or belong to the class of well known self-shrinking quadrics.
UR - http://www.scopus.com/inward/record.url?scp=85025991929&partnerID=8YFLogxK
U2 - 10.1524/anly.2011.0941
DO - 10.1524/anly.2011.0941
M3 - Article
AN - SCOPUS:85025991929
VL - 31
SP - 91
EP - 102
JO - Analysis (Germany)
JF - Analysis (Germany)
SN - 0174-4747
IS - 1
ER -