Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 221-225 |
Seitenumfang | 5 |
Fachzeitschrift | Expositiones mathematicae |
Jahrgang | 35 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Juni 2017 |
Extern publiziert | Ja |
Abstract
Let G be a permutation group on n<∞ objects. Let f(g) be the number of fixed points of g∈G, and let {f(g):1≠g∈G}={f1,…,fr}. In this expository note we give a character-free proof of a theorem of Blichfeldt which asserts that the order of G divides (n−f1)…(n−fr). We also discuss the sharpness of this bound.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Expositiones mathematicae, Jahrgang 35, Nr. 2, 06.2017, S. 221-225.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On a theorem of Blichfeldt
AU - Sambale, Benjamin
N1 - Funding information: This work is supported by the German Research Foundation (project SA 2864/1-1) and the Daimler and Benz Foundation (project 32-08/13).
PY - 2017/6
Y1 - 2017/6
N2 - Let G be a permutation group on n<∞ objects. Let f(g) be the number of fixed points of g∈G, and let {f(g):1≠g∈G}={f1,…,fr}. In this expository note we give a character-free proof of a theorem of Blichfeldt which asserts that the order of G divides (n−f1)…(n−fr). We also discuss the sharpness of this bound.
AB - Let G be a permutation group on n<∞ objects. Let f(g) be the number of fixed points of g∈G, and let {f(g):1≠g∈G}={f1,…,fr}. In this expository note we give a character-free proof of a theorem of Blichfeldt which asserts that the order of G divides (n−f1)…(n−fr). We also discuss the sharpness of this bound.
KW - Blichfeldt's theorem
KW - Number of fixed points
KW - Permutation character
UR - http://www.scopus.com/inward/record.url?scp=85006041088&partnerID=8YFLogxK
U2 - 10.1016/j.exmath.2016.10.002
DO - 10.1016/j.exmath.2016.10.002
M3 - Article
AN - SCOPUS:85006041088
VL - 35
SP - 221
EP - 225
JO - Expositiones mathematicae
JF - Expositiones mathematicae
SN - 0723-0869
IS - 2
ER -