Details
Originalsprache | Französisch |
---|---|
Seiten (von - bis) | 3530-3541 |
Fachzeitschrift | Bulletin of the London Mathematical Society |
Jahrgang | 56 |
Ausgabenummer | 11 |
Publikationsstatus | Veröffentlicht - 3 Nov. 2024 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Bulletin of the London Mathematical Society, Jahrgang 56, Nr. 11, 03.11.2024, S. 3530-3541.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On a Galois property of fields generated by the torsion of an abelian variety
AU - Checcoli, Sara
AU - Dill, Gabriel A.
PY - 2024/11/3
Y1 - 2024/11/3
N2 - In this article, we study a certain Galois property of subextensions of $k(A_{\mathrm{tors}})$, the minimal field of definition of all torsion points of an abelian variety $A$ defined over a number field $k$. Concretely, we show that each subfield of $k(A_{\mathrm{tors}})$ which is Galois over $k$ (of possibly infinite degree) and whose Galois group has finite exponent is contained in an abelian extension of some finite extension of $k$. As an immediate corollary of this result and a theorem of Bombieri and Zannier, we deduce that each such field has the Northcott property, i.e. does not contain any infinite set of algebraic numbers of bounded height.
AB - In this article, we study a certain Galois property of subextensions of $k(A_{\mathrm{tors}})$, the minimal field of definition of all torsion points of an abelian variety $A$ defined over a number field $k$. Concretely, we show that each subfield of $k(A_{\mathrm{tors}})$ which is Galois over $k$ (of possibly infinite degree) and whose Galois group has finite exponent is contained in an abelian extension of some finite extension of $k$. As an immediate corollary of this result and a theorem of Bombieri and Zannier, we deduce that each such field has the Northcott property, i.e. does not contain any infinite set of algebraic numbers of bounded height.
KW - math.NT
KW - 11J95, 11R32
U2 - 10.1112/blms.13149
DO - 10.1112/blms.13149
M3 - Article
VL - 56
SP - 3530
EP - 3541
JO - Bulletin of the London Mathematical Society
JF - Bulletin of the London Mathematical Society
SN - 0024-6093
IS - 11
ER -