Loading [MathJax]/extensions/tex2jax.js

On a degenerate nonlocal parabolic problem describing infinite dimensional replicator dynamics

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Nikos I. Kavallaris
  • Johannes Lankeit
  • Michael Winkler

Externe Organisationen

  • University of Chester
  • Universität Paderborn

Details

OriginalspracheEnglisch
Seiten (von - bis)954-983
Seitenumfang30
FachzeitschriftSIAM Journal on Mathematical Analysis
Jahrgang49
Ausgabenummer2
PublikationsstatusVeröffentlicht - 2017
Extern publiziertJa

Abstract

We establish the existence of locally positive weak solutions to the homogeneous Dirichlet problem for ut = uΔu + u ∫Ω |∇u|2 in bounded domains Ω ⊂ ℝn which arises in game theory. We prove that solutions converge to 0 if the initial mass is small, whereas they undergo blow-up in finite time if the initial mass is large. In particular, it is shown that in this case the blow-up set coincides with Ω; i.e., the finite-time blow-up is global.

ASJC Scopus Sachgebiete

Zitieren

On a degenerate nonlocal parabolic problem describing infinite dimensional replicator dynamics. / Kavallaris, Nikos I.; Lankeit, Johannes; Winkler, Michael.
in: SIAM Journal on Mathematical Analysis, Jahrgang 49, Nr. 2, 2017, S. 954-983.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Kavallaris, Nikos I. ; Lankeit, Johannes ; Winkler, Michael. / On a degenerate nonlocal parabolic problem describing infinite dimensional replicator dynamics. in: SIAM Journal on Mathematical Analysis. 2017 ; Jahrgang 49, Nr. 2. S. 954-983.
Download
@article{76d22a891416486489b6f9899c723e1a,
title = "On a degenerate nonlocal parabolic problem describing infinite dimensional replicator dynamics",
abstract = "We establish the existence of locally positive weak solutions to the homogeneous Dirichlet problem for ut = uΔu + u ∫Ω |∇u|2 in bounded domains Ω ⊂ ℝn which arises in game theory. We prove that solutions converge to 0 if the initial mass is small, whereas they undergo blow-up in finite time if the initial mass is large. In particular, it is shown that in this case the blow-up set coincides with Ω; i.e., the finite-time blow-up is global.",
keywords = "Blow-up, Degenerate diffusion, Evolutionary games, Infinite dimensional replicator dynamics, Nonlocal nonlinearity",
author = "Kavallaris, {Nikos I.} and Johannes Lankeit and Michael Winkler",
year = "2017",
doi = "10.1137/15M1053840",
language = "English",
volume = "49",
pages = "954--983",
journal = "SIAM Journal on Mathematical Analysis",
issn = "0036-1410",
publisher = "Society for Industrial and Applied Mathematics Publications",
number = "2",

}

Download

TY - JOUR

T1 - On a degenerate nonlocal parabolic problem describing infinite dimensional replicator dynamics

AU - Kavallaris, Nikos I.

AU - Lankeit, Johannes

AU - Winkler, Michael

PY - 2017

Y1 - 2017

N2 - We establish the existence of locally positive weak solutions to the homogeneous Dirichlet problem for ut = uΔu + u ∫Ω |∇u|2 in bounded domains Ω ⊂ ℝn which arises in game theory. We prove that solutions converge to 0 if the initial mass is small, whereas they undergo blow-up in finite time if the initial mass is large. In particular, it is shown that in this case the blow-up set coincides with Ω; i.e., the finite-time blow-up is global.

AB - We establish the existence of locally positive weak solutions to the homogeneous Dirichlet problem for ut = uΔu + u ∫Ω |∇u|2 in bounded domains Ω ⊂ ℝn which arises in game theory. We prove that solutions converge to 0 if the initial mass is small, whereas they undergo blow-up in finite time if the initial mass is large. In particular, it is shown that in this case the blow-up set coincides with Ω; i.e., the finite-time blow-up is global.

KW - Blow-up

KW - Degenerate diffusion

KW - Evolutionary games

KW - Infinite dimensional replicator dynamics

KW - Nonlocal nonlinearity

UR - http://www.scopus.com/inward/record.url?scp=85018724882&partnerID=8YFLogxK

U2 - 10.1137/15M1053840

DO - 10.1137/15M1053840

M3 - Article

AN - SCOPUS:85018724882

VL - 49

SP - 954

EP - 983

JO - SIAM Journal on Mathematical Analysis

JF - SIAM Journal on Mathematical Analysis

SN - 0036-1410

IS - 2

ER -