On a constant arising in Manin's conjecture for Del Pezzo surfaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Externe Organisationen

  • Universität Zürich (UZH)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)481-489
Seitenumfang9
FachzeitschriftMathematical research letters
Jahrgang14
Ausgabenummer2-3
PublikationsstatusVeröffentlicht - 1 März 2007
Extern publiziertJa

Abstract

For split smooth Del Pezzo surfaces, we analyse the structure of the effective cone and prove a recursive formula for the value of α, appearing in the leading constant as predicted by Peyre of Manin's conjecture on the number of rational points of bounded height on the surface. Furthermore, we calculate α for all singular Del Pezzo surfaces of degree > 3.

ASJC Scopus Sachgebiete

Zitieren

On a constant arising in Manin's conjecture for Del Pezzo surfaces. / Derenthal, Ulrich.
in: Mathematical research letters, Jahrgang 14, Nr. 2-3, 01.03.2007, S. 481-489.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{2ad8493366da4387a2e4130b124c3075,
title = "On a constant arising in Manin's conjecture for Del Pezzo surfaces",
abstract = "For split smooth Del Pezzo surfaces, we analyse the structure of the effective cone and prove a recursive formula for the value of α, appearing in the leading constant as predicted by Peyre of Manin's conjecture on the number of rational points of bounded height on the surface. Furthermore, we calculate α for all singular Del Pezzo surfaces of degree > 3.",
keywords = "Del Pezzo surface, Effective cone, Manin's conjecture",
author = "Ulrich Derenthal",
year = "2007",
month = mar,
day = "1",
language = "English",
volume = "14",
pages = "481--489",
journal = "Mathematical research letters",
issn = "1073-2780",
publisher = "International Press of Boston, Inc.",
number = "2-3",

}

Download

TY - JOUR

T1 - On a constant arising in Manin's conjecture for Del Pezzo surfaces

AU - Derenthal, Ulrich

PY - 2007/3/1

Y1 - 2007/3/1

N2 - For split smooth Del Pezzo surfaces, we analyse the structure of the effective cone and prove a recursive formula for the value of α, appearing in the leading constant as predicted by Peyre of Manin's conjecture on the number of rational points of bounded height on the surface. Furthermore, we calculate α for all singular Del Pezzo surfaces of degree > 3.

AB - For split smooth Del Pezzo surfaces, we analyse the structure of the effective cone and prove a recursive formula for the value of α, appearing in the leading constant as predicted by Peyre of Manin's conjecture on the number of rational points of bounded height on the surface. Furthermore, we calculate α for all singular Del Pezzo surfaces of degree > 3.

KW - Del Pezzo surface

KW - Effective cone

KW - Manin's conjecture

UR - http://www.scopus.com/inward/record.url?scp=34547405665&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:34547405665

VL - 14

SP - 481

EP - 489

JO - Mathematical research letters

JF - Mathematical research letters

SN - 1073-2780

IS - 2-3

ER -

Von denselben Autoren