Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 555-567 |
Seitenumfang | 13 |
Fachzeitschrift | Annals of the Institute of Statistical Mathematics |
Jahrgang | 49 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Sept. 1997 |
Abstract
We consider stochastic equations of the form X =d W1X + W2X′, where (W1, W2), X and X′ are independent, '=d' denotes equality in distribution, EW1 + EW2 = 1 and X =d X′. We discuss existence, uniqueness and stability of the solutions, using contraction arguments and an approach based on moments. The case of {0, 1}-valued W1 and constant W2 leads to a characterization of exponential distributions.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Statistik und Wahrscheinlichkeit
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annals of the Institute of Statistical Mathematics, Jahrgang 49, Nr. 3, 09.1997, S. 555-567.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On a class of characterization problems for random convex combinations
AU - Baringhaus, Ludwig
AU - Grübel, Rudolf
PY - 1997/9
Y1 - 1997/9
N2 - We consider stochastic equations of the form X =d W1X + W2X′, where (W1, W2), X and X′ are independent, '=d' denotes equality in distribution, EW1 + EW2 = 1 and X =d X′. We discuss existence, uniqueness and stability of the solutions, using contraction arguments and an approach based on moments. The case of {0, 1}-valued W1 and constant W2 leads to a characterization of exponential distributions.
AB - We consider stochastic equations of the form X =d W1X + W2X′, where (W1, W2), X and X′ are independent, '=d' denotes equality in distribution, EW1 + EW2 = 1 and X =d X′. We discuss existence, uniqueness and stability of the solutions, using contraction arguments and an approach based on moments. The case of {0, 1}-valued W1 and constant W2 leads to a characterization of exponential distributions.
KW - Characterization problems
KW - Contractions
KW - Exponential distributions
KW - Stochastic difference equations
UR - http://www.scopus.com/inward/record.url?scp=9844243443&partnerID=8YFLogxK
U2 - 10.1023/A:1003127114209
DO - 10.1023/A:1003127114209
M3 - Article
AN - SCOPUS:9844243443
VL - 49
SP - 555
EP - 567
JO - Annals of the Institute of Statistical Mathematics
JF - Annals of the Institute of Statistical Mathematics
SN - 0020-3157
IS - 3
ER -