Object Proposals for Pedestrian Detection in Stereo Images

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

  • Uyen Nguyen
  • Franz Rottensteiner
  • Christian Heipke
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des Sammelwerks38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München
UntertitelPublikationen der DGPF
Seitenumfang13
Band27
PublikationsstatusVeröffentlicht - 2018
VeranstaltungPFGK 18: Photogrammetrie-Fernerkundung-Geoinformatik-Kartografie-2018 - Technische Universität München, München, Deutschland
Dauer: 7 März 20189 März 2018

Publikationsreihe

NamePublikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.
Band27
ISSN (Print)0942-2870

Abstract

Pedestrian detection is an active research field in computer vision and photogrammetry today due to its importance for applications related to autonomous driving, machine human interaction, and surveillance. Object proposals play a significant role in guiding a classifier where to examine image regions that may contain pedestrians. In this paper, we present a proposal framework employing both 3D information derived from stereo images and RGB cues to generate pedestrian bounding box proposals with high recall and relatively small number of candidates. Our proposal generator has two stages: (1) generating a large number of proposals to achieve a good recall value; and (2) eliminating unreasonable initial candidates based on 3D cues and pedestrian geometric constraints. Preliminary experiments on the Kitti benchmark dataset show that our proposal framework is comparable to state-of-the-art methods.

Zitieren

Object Proposals for Pedestrian Detection in Stereo Images. / Nguyen, Uyen; Rottensteiner, Franz; Heipke, Christian.
38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München: Publikationen der DGPF. Band 27 2018. (Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.; Band 27).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Nguyen, U, Rottensteiner, F & Heipke, C 2018, Object Proposals for Pedestrian Detection in Stereo Images. in 38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München: Publikationen der DGPF. Bd. 27, Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V., Bd. 27, PFGK 18, München, Bayern, Deutschland, 7 März 2018. <https://www.dgpf.de/src/tagung/jt2018/proceedings/start.html>
Nguyen, U., Rottensteiner, F., & Heipke, C. (2018). Object Proposals for Pedestrian Detection in Stereo Images. In 38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München: Publikationen der DGPF (Band 27). (Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.; Band 27). https://www.dgpf.de/src/tagung/jt2018/proceedings/start.html
Nguyen U, Rottensteiner F, Heipke C. Object Proposals for Pedestrian Detection in Stereo Images. in 38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München: Publikationen der DGPF. Band 27. 2018. (Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.).
Nguyen, Uyen ; Rottensteiner, Franz ; Heipke, Christian. / Object Proposals for Pedestrian Detection in Stereo Images. 38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München: Publikationen der DGPF. Band 27 2018. (Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.).
Download
@inproceedings{3681777db0024e968cf0fa820d833be0,
title = "Object Proposals for Pedestrian Detection in Stereo Images",
abstract = "Pedestrian detection is an active research field in computer vision and photogrammetry today due to its importance for applications related to autonomous driving, machine human interaction, and surveillance. Object proposals play a significant role in guiding a classifier where to examine image regions that may contain pedestrians. In this paper, we present a proposal framework employing both 3D information derived from stereo images and RGB cues to generate pedestrian bounding box proposals with high recall and relatively small number of candidates. Our proposal generator has two stages: (1) generating a large number of proposals to achieve a good recall value; and (2) eliminating unreasonable initial candidates based on 3D cues and pedestrian geometric constraints. Preliminary experiments on the Kitti benchmark dataset show that our proposal framework is comparable to state-of-the-art methods. ",
author = "Uyen Nguyen and Franz Rottensteiner and Christian Heipke",
year = "2018",
language = "English",
volume = "27",
series = "Publikationen der Deutschen Gesellschaft f{\"u}r Photogrammetrie, Fernerkundung und Geoinformation e.V.",
booktitle = "38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in M{\"u}nchen",
note = "PFGK 18 ; Conference date: 07-03-2018 Through 09-03-2018",

}

Download

TY - GEN

T1 - Object Proposals for Pedestrian Detection in Stereo Images

AU - Nguyen, Uyen

AU - Rottensteiner, Franz

AU - Heipke, Christian

PY - 2018

Y1 - 2018

N2 - Pedestrian detection is an active research field in computer vision and photogrammetry today due to its importance for applications related to autonomous driving, machine human interaction, and surveillance. Object proposals play a significant role in guiding a classifier where to examine image regions that may contain pedestrians. In this paper, we present a proposal framework employing both 3D information derived from stereo images and RGB cues to generate pedestrian bounding box proposals with high recall and relatively small number of candidates. Our proposal generator has two stages: (1) generating a large number of proposals to achieve a good recall value; and (2) eliminating unreasonable initial candidates based on 3D cues and pedestrian geometric constraints. Preliminary experiments on the Kitti benchmark dataset show that our proposal framework is comparable to state-of-the-art methods.

AB - Pedestrian detection is an active research field in computer vision and photogrammetry today due to its importance for applications related to autonomous driving, machine human interaction, and surveillance. Object proposals play a significant role in guiding a classifier where to examine image regions that may contain pedestrians. In this paper, we present a proposal framework employing both 3D information derived from stereo images and RGB cues to generate pedestrian bounding box proposals with high recall and relatively small number of candidates. Our proposal generator has two stages: (1) generating a large number of proposals to achieve a good recall value; and (2) eliminating unreasonable initial candidates based on 3D cues and pedestrian geometric constraints. Preliminary experiments on the Kitti benchmark dataset show that our proposal framework is comparable to state-of-the-art methods.

M3 - Conference contribution

VL - 27

T3 - Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.

BT - 38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München

T2 - PFGK 18

Y2 - 7 March 2018 through 9 March 2018

ER -