Loading [MathJax]/extensions/tex2jax.js

Object Instance Segmentation in Digital Terrain Models

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autorschaft

Details

OriginalspracheEnglisch
Titel des SammelwerksComputer Analysis of Images and Patterns
Untertitel18th International Conference, CAIP 2019, Proceedings, part II
Herausgeber/-innenMario Vento, Gennaro Percanella
Herausgeber (Verlag)Springer Verlag
Seiten488-495
Seitenumfang8
Auflage1.
ISBN (elektronisch)978-3-030-29891-3
ISBN (Print)978-3-030-29890-6
PublikationsstatusVeröffentlicht - 22 Aug. 2019
Veranstaltung18th International Conference on Computer Analysis of Images and Patterns, CAIP 2019 - Salerno, Italien
Dauer: 3 Sept. 20195 Sept. 2019

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11679 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Abstract

We use an object instance segmentation approach in deep learning to detect and outline objects in Digital Terrain Models (DTMs) derived from Airborne Laser Scanning (ALS) data. Object detection methods in computer vision have been extensively applied to RGB images, and gained excellent results. In this work, we use Mask R-CNN, a famous object detection model, to detect objects in archaeological sites by feeding the model with DTM data. Our experiments show successful application of the Mask R-CNN model, originally developed for image data, on DTM data.

ASJC Scopus Sachgebiete

Zitieren

Object Instance Segmentation in Digital Terrain Models. / Kazimi, Bashir; Thiemann, Frank; Sester, Monika.
Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Proceedings, part II. Hrsg. / Mario Vento; Gennaro Percanella. 1. Aufl. Springer Verlag, 2019. S. 488-495 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 11679 LNCS).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Kazimi, B, Thiemann, F & Sester, M 2019, Object Instance Segmentation in Digital Terrain Models. in M Vento & G Percanella (Hrsg.), Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Proceedings, part II. 1. Aufl., Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Bd. 11679 LNCS, Springer Verlag, S. 488-495, 18th International Conference on Computer Analysis of Images and Patterns, CAIP 2019, Salerno, Italien, 3 Sept. 2019. https://doi.org/10.1007/978-3-030-29891-3_43
Kazimi, B., Thiemann, F., & Sester, M. (2019). Object Instance Segmentation in Digital Terrain Models. In M. Vento, & G. Percanella (Hrsg.), Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Proceedings, part II (1. Aufl., S. 488-495). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 11679 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-29891-3_43
Kazimi B, Thiemann F, Sester M. Object Instance Segmentation in Digital Terrain Models. in Vento M, Percanella G, Hrsg., Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Proceedings, part II. 1. Aufl. Springer Verlag. 2019. S. 488-495. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). doi: 10.1007/978-3-030-29891-3_43
Kazimi, Bashir ; Thiemann, Frank ; Sester, Monika. / Object Instance Segmentation in Digital Terrain Models. Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Proceedings, part II. Hrsg. / Mario Vento ; Gennaro Percanella. 1. Aufl. Springer Verlag, 2019. S. 488-495 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
Download
@inproceedings{7c341fdad2ce4bcaaa5af023696aaab4,
title = "Object Instance Segmentation in Digital Terrain Models",
abstract = "We use an object instance segmentation approach in deep learning to detect and outline objects in Digital Terrain Models (DTMs) derived from Airborne Laser Scanning (ALS) data. Object detection methods in computer vision have been extensively applied to RGB images, and gained excellent results. In this work, we use Mask R-CNN, a famous object detection model, to detect objects in archaeological sites by feeding the model with DTM data. Our experiments show successful application of the Mask R-CNN model, originally developed for image data, on DTM data.",
keywords = "Deep learning, Digital terrain models, Instance segmentation",
author = "Bashir Kazimi and Frank Thiemann and Monika Sester",
year = "2019",
month = aug,
day = "22",
doi = "10.1007/978-3-030-29891-3_43",
language = "English",
isbn = "978-3-030-29890-6",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "488--495",
editor = "Mario Vento and Gennaro Percanella",
booktitle = "Computer Analysis of Images and Patterns",
address = "Germany",
edition = "1.",
note = "18th International Conference on Computer Analysis of Images and Patterns, CAIP 2019 ; Conference date: 03-09-2019 Through 05-09-2019",

}

Download

TY - GEN

T1 - Object Instance Segmentation in Digital Terrain Models

AU - Kazimi, Bashir

AU - Thiemann, Frank

AU - Sester, Monika

PY - 2019/8/22

Y1 - 2019/8/22

N2 - We use an object instance segmentation approach in deep learning to detect and outline objects in Digital Terrain Models (DTMs) derived from Airborne Laser Scanning (ALS) data. Object detection methods in computer vision have been extensively applied to RGB images, and gained excellent results. In this work, we use Mask R-CNN, a famous object detection model, to detect objects in archaeological sites by feeding the model with DTM data. Our experiments show successful application of the Mask R-CNN model, originally developed for image data, on DTM data.

AB - We use an object instance segmentation approach in deep learning to detect and outline objects in Digital Terrain Models (DTMs) derived from Airborne Laser Scanning (ALS) data. Object detection methods in computer vision have been extensively applied to RGB images, and gained excellent results. In this work, we use Mask R-CNN, a famous object detection model, to detect objects in archaeological sites by feeding the model with DTM data. Our experiments show successful application of the Mask R-CNN model, originally developed for image data, on DTM data.

KW - Deep learning

KW - Digital terrain models

KW - Instance segmentation

UR - http://www.scopus.com/inward/record.url?scp=85072854149&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-29891-3_43

DO - 10.1007/978-3-030-29891-3_43

M3 - Conference contribution

AN - SCOPUS:85072854149

SN - 978-3-030-29890-6

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 488

EP - 495

BT - Computer Analysis of Images and Patterns

A2 - Vento, Mario

A2 - Percanella, Gennaro

PB - Springer Verlag

T2 - 18th International Conference on Computer Analysis of Images and Patterns, CAIP 2019

Y2 - 3 September 2019 through 5 September 2019

ER -

Von denselben Autoren