Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 101114 |
Fachzeitschrift | Journal of Agriculture and Food Research |
Jahrgang | 16 |
Frühes Online-Datum | 16 März 2024 |
Publikationsstatus | Veröffentlicht - Juni 2024 |
Abstract
Spinach (Spinacia oleracea L.) is a leafy green vegetable that belongs to the family Amaranthus, sub-family Chenopodiaceae. It is famous for its low-calorie content and rich nutritional profile of zinc, folic acid, iron, calcium, magnesium, retinol, and ascorbic acid. In contrast, pesticide residues like imidacloprid, cypermethrin, bifenthrin, chlorpyrifos, and deltamethrin and antinutrients like alkaloids, phytates, tannins, and oxalates are also found in spinach, which inhibit nutrient absorption and also exert deleterious effects in humans. The present study was aimed at determining the technofunctional and nutritional characteristics and improving the consumer safety aspects of dehydrated spinach powder (SP). Spinach was processed to improve its safety characteristics using thermal and non-thermal processing techniques, including microwave heat processing, blanching, acid, and alkali soaking. Findings on the nutrient composition of raw and treated forms suggest SP developed from raw spinach as a promising source of ash (2.9%), fibers (8.19%), proteins (19.1%), Na (97.9 mg/100g), Ca (1304 mg/100g), K (234.2 mg/100g), Fe (41.1 mg/100g), and Zn (14.3 mg/100g). Microwave heating anticipated the highest decline of the content of alkaloids, oxalates, tannins, and phytates by 85, 87, 88 and 89%, respectively. Similarly, microwave heating of SP was found to be more promising in reducing the burden of pesticides such as imidacloprid, cypermethrin, bifenthrin, chlorpyrifos, and deltamethrin by 86, 74, 84, 80 and 78%, respectively. Value-added unleavened flatbreads (chapatis) with 5% SP were observed to have the better color, taste, and textural attributes. The study proposes thermal processing i.e., microwave heat processing in particular as a safer approach to reduce the natural antinutrients and extrinsic toxicants of spinach to a level considerably safer for consumption.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Lebensmittelwissenschaften
- Agrar- und Biowissenschaften (insg.)
- Agronomie und Nutzpflanzenwissenschaften
- Agrar- und Biowissenschaften (insg.)
- Agrar- und Biowissenschaften (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Agriculture and Food Research, Jahrgang 16, 101114, 06.2024.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Nutritional, safety and sensory quality evaluation of unleavened flatbread supplemented with thermal and non-thermal processed spinach powder
AU - Waseem, Muhammad
AU - Akhtar, Saeed
AU - Mehmood, Tahir
AU - Qamar, Muhammad
AU - Saeed, Wisha
AU - Younis, Muhammad
AU - Perveen, Saima
AU - Ismail, Tariq
AU - Esatbeyoglu, Tuba
N1 - The publication of this article was funded by the Open Access Fund of Leibniz Universität Hannover.
PY - 2024/6
Y1 - 2024/6
N2 - Spinach (Spinacia oleracea L.) is a leafy green vegetable that belongs to the family Amaranthus, sub-family Chenopodiaceae. It is famous for its low-calorie content and rich nutritional profile of zinc, folic acid, iron, calcium, magnesium, retinol, and ascorbic acid. In contrast, pesticide residues like imidacloprid, cypermethrin, bifenthrin, chlorpyrifos, and deltamethrin and antinutrients like alkaloids, phytates, tannins, and oxalates are also found in spinach, which inhibit nutrient absorption and also exert deleterious effects in humans. The present study was aimed at determining the technofunctional and nutritional characteristics and improving the consumer safety aspects of dehydrated spinach powder (SP). Spinach was processed to improve its safety characteristics using thermal and non-thermal processing techniques, including microwave heat processing, blanching, acid, and alkali soaking. Findings on the nutrient composition of raw and treated forms suggest SP developed from raw spinach as a promising source of ash (2.9%), fibers (8.19%), proteins (19.1%), Na (97.9 mg/100g), Ca (1304 mg/100g), K (234.2 mg/100g), Fe (41.1 mg/100g), and Zn (14.3 mg/100g). Microwave heating anticipated the highest decline of the content of alkaloids, oxalates, tannins, and phytates by 85, 87, 88 and 89%, respectively. Similarly, microwave heating of SP was found to be more promising in reducing the burden of pesticides such as imidacloprid, cypermethrin, bifenthrin, chlorpyrifos, and deltamethrin by 86, 74, 84, 80 and 78%, respectively. Value-added unleavened flatbreads (chapatis) with 5% SP were observed to have the better color, taste, and textural attributes. The study proposes thermal processing i.e., microwave heat processing in particular as a safer approach to reduce the natural antinutrients and extrinsic toxicants of spinach to a level considerably safer for consumption.
AB - Spinach (Spinacia oleracea L.) is a leafy green vegetable that belongs to the family Amaranthus, sub-family Chenopodiaceae. It is famous for its low-calorie content and rich nutritional profile of zinc, folic acid, iron, calcium, magnesium, retinol, and ascorbic acid. In contrast, pesticide residues like imidacloprid, cypermethrin, bifenthrin, chlorpyrifos, and deltamethrin and antinutrients like alkaloids, phytates, tannins, and oxalates are also found in spinach, which inhibit nutrient absorption and also exert deleterious effects in humans. The present study was aimed at determining the technofunctional and nutritional characteristics and improving the consumer safety aspects of dehydrated spinach powder (SP). Spinach was processed to improve its safety characteristics using thermal and non-thermal processing techniques, including microwave heat processing, blanching, acid, and alkali soaking. Findings on the nutrient composition of raw and treated forms suggest SP developed from raw spinach as a promising source of ash (2.9%), fibers (8.19%), proteins (19.1%), Na (97.9 mg/100g), Ca (1304 mg/100g), K (234.2 mg/100g), Fe (41.1 mg/100g), and Zn (14.3 mg/100g). Microwave heating anticipated the highest decline of the content of alkaloids, oxalates, tannins, and phytates by 85, 87, 88 and 89%, respectively. Similarly, microwave heating of SP was found to be more promising in reducing the burden of pesticides such as imidacloprid, cypermethrin, bifenthrin, chlorpyrifos, and deltamethrin by 86, 74, 84, 80 and 78%, respectively. Value-added unleavened flatbreads (chapatis) with 5% SP were observed to have the better color, taste, and textural attributes. The study proposes thermal processing i.e., microwave heat processing in particular as a safer approach to reduce the natural antinutrients and extrinsic toxicants of spinach to a level considerably safer for consumption.
KW - Antinutrient
KW - Bread
KW - Fortification
KW - Leafy vegetable
KW - Microwave processing
KW - Pesticide
KW - Product development
KW - Spinacia oleracea
UR - http://www.scopus.com/inward/record.url?scp=85188689884&partnerID=8YFLogxK
U2 - 10.1016/j.jafr.2024.101114
DO - 10.1016/j.jafr.2024.101114
M3 - Article
VL - 16
JO - Journal of Agriculture and Food Research
JF - Journal of Agriculture and Food Research
M1 - 101114
ER -