Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • University of Latvia
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)522-536
Seitenumfang15
FachzeitschriftMetallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
Jahrgang47
Ausgabenummer1
PublikationsstatusVeröffentlicht - 16 Nov. 2015

Abstract

By means of external coupling between electromagnetic (EM) problem in ANSYS and hydrodynamic problem in FLUENT, a numerical model for the liquid metal free surface flow in an alternate EM field has been developed and verified in the first part of the article. Volume of Fluid (VOF) algorithm has been used for tracking of free surface. In this work, improved performance of the model is presented. General validation of the VOF algorithm is performed by comparison of the calculated free oscillations of the liquid column to its analytical solution. The 3D/VOF calculation of coupled EM field and free surface flow with Large Eddy Simulation turbulence description for the first time is applied for modeling of conventional EM levitation. Calculation results are compared with 2D/VOF and 3D/VOF models that use less precise k–ε and k–ω SST turbulence formulations. Obtained time-averaged droplet shapes are used for single-phase flow calculations with different turbulence models and free-slip/no-slip velocity conditions at the fixed free surface for validation of the flow. Meanwhile, series of levitation melting experiments are performed for verification of the simulated droplet shapes. In conclusion, parameter impact on the fully developed flow and the levitated droplet shape is discussed.

ASJC Scopus Sachgebiete

Zitieren

Download
@article{22dfa91d8599474e80d4040f7595b6be,
title = "Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation",
abstract = "By means of external coupling between electromagnetic (EM) problem in ANSYS and hydrodynamic problem in FLUENT, a numerical model for the liquid metal free surface flow in an alternate EM field has been developed and verified in the first part of the article. Volume of Fluid (VOF) algorithm has been used for tracking of free surface. In this work, improved performance of the model is presented. General validation of the VOF algorithm is performed by comparison of the calculated free oscillations of the liquid column to its analytical solution. The 3D/VOF calculation of coupled EM field and free surface flow with Large Eddy Simulation turbulence description for the first time is applied for modeling of conventional EM levitation. Calculation results are compared with 2D/VOF and 3D/VOF models that use less precise k–ε and k–ω SST turbulence formulations. Obtained time-averaged droplet shapes are used for single-phase flow calculations with different turbulence models and free-slip/no-slip velocity conditions at the fixed free surface for validation of the flow. Meanwhile, series of levitation melting experiments are performed for verification of the simulated droplet shapes. In conclusion, parameter impact on the fully developed flow and the levitated droplet shape is discussed.",
author = "Sergejs Spitans and Egbert Baake and Bernard Nacke and Andris Jakovics",
note = "Funding information: This work has been supported by the European Social Fund within the project “Support for Doctoral Studies at University of Latvia” No. 2009/0162/1DP/1.1.2.1.1/09/IPIA/VIAA/004. The authors wish to acknowledge the German Research Association for supporting this study under the Grant No. BA 3565/3-2. The authors would like to thank Dr. Valdis Bojarevics for kindly sharing his simulation data of Okress et al. experiment within personal communication.",
year = "2015",
month = nov,
day = "16",
doi = "10.1007/s11663-015-0515-7",
language = "English",
volume = "47",
pages = "522--536",
journal = "Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science",
issn = "1073-5615",
publisher = "ASM International",
number = "1",

}

Download

TY - JOUR

T1 - Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II

T2 - Conventional Electromagnetic Levitation

AU - Spitans, Sergejs

AU - Baake, Egbert

AU - Nacke, Bernard

AU - Jakovics, Andris

N1 - Funding information: This work has been supported by the European Social Fund within the project “Support for Doctoral Studies at University of Latvia” No. 2009/0162/1DP/1.1.2.1.1/09/IPIA/VIAA/004. The authors wish to acknowledge the German Research Association for supporting this study under the Grant No. BA 3565/3-2. The authors would like to thank Dr. Valdis Bojarevics for kindly sharing his simulation data of Okress et al. experiment within personal communication.

PY - 2015/11/16

Y1 - 2015/11/16

N2 - By means of external coupling between electromagnetic (EM) problem in ANSYS and hydrodynamic problem in FLUENT, a numerical model for the liquid metal free surface flow in an alternate EM field has been developed and verified in the first part of the article. Volume of Fluid (VOF) algorithm has been used for tracking of free surface. In this work, improved performance of the model is presented. General validation of the VOF algorithm is performed by comparison of the calculated free oscillations of the liquid column to its analytical solution. The 3D/VOF calculation of coupled EM field and free surface flow with Large Eddy Simulation turbulence description for the first time is applied for modeling of conventional EM levitation. Calculation results are compared with 2D/VOF and 3D/VOF models that use less precise k–ε and k–ω SST turbulence formulations. Obtained time-averaged droplet shapes are used for single-phase flow calculations with different turbulence models and free-slip/no-slip velocity conditions at the fixed free surface for validation of the flow. Meanwhile, series of levitation melting experiments are performed for verification of the simulated droplet shapes. In conclusion, parameter impact on the fully developed flow and the levitated droplet shape is discussed.

AB - By means of external coupling between electromagnetic (EM) problem in ANSYS and hydrodynamic problem in FLUENT, a numerical model for the liquid metal free surface flow in an alternate EM field has been developed and verified in the first part of the article. Volume of Fluid (VOF) algorithm has been used for tracking of free surface. In this work, improved performance of the model is presented. General validation of the VOF algorithm is performed by comparison of the calculated free oscillations of the liquid column to its analytical solution. The 3D/VOF calculation of coupled EM field and free surface flow with Large Eddy Simulation turbulence description for the first time is applied for modeling of conventional EM levitation. Calculation results are compared with 2D/VOF and 3D/VOF models that use less precise k–ε and k–ω SST turbulence formulations. Obtained time-averaged droplet shapes are used for single-phase flow calculations with different turbulence models and free-slip/no-slip velocity conditions at the fixed free surface for validation of the flow. Meanwhile, series of levitation melting experiments are performed for verification of the simulated droplet shapes. In conclusion, parameter impact on the fully developed flow and the levitated droplet shape is discussed.

UR - http://www.scopus.com/inward/record.url?scp=84958171623&partnerID=8YFLogxK

U2 - 10.1007/s11663-015-0515-7

DO - 10.1007/s11663-015-0515-7

M3 - Article

AN - SCOPUS:84958171623

VL - 47

SP - 522

EP - 536

JO - Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science

JF - Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science

SN - 1073-5615

IS - 1

ER -

Von denselben Autoren