Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 162 |
Fachzeitschrift | Entropy |
Jahrgang | 25 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 13 Jan. 2023 |
Abstract
In this manuscript, off-set strip fin structures are presented which are adapted to the possibilities of additive manufacturing. For this purpose, the geometric parameters, including fin height, fin spacing, fin length, and fin longitudinal displacement, are varied, and the Colburn j-factor and the Fanning friction factor are numerically calculated in the Reynolds number range of 80–920. The structures are classified with respect to their entropy production number according to Bejan. This method is compared with the results from partial differential equations for the calculation of the irreversible entropy production rate due to shear stresses and heat conduction. This study reveals that the chosen temperature difference leads to deviation in terms of entropy production due to heat conduction, whereas the dissipation by shear stresses shows only small deviations of less than 2%. It is further shown that the variation in fin height and fin spacing has only a small influence on heat transfer and pressure drop, while a variation in fin length and fin longitudinal displacement shows a larger influence. With respect to the entropy production number, short and long fins, as well as large fin spacing and fin longitudinal displacement, are shown to be beneficial. A detailed examination of a single structure shows that the entropy production rate due to heat conduction is dominated by the entropy production rate in the wall, while the fluid has only a minor influence.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Information systems
- Mathematik (insg.)
- Mathematische Physik
- Physik und Astronomie (insg.)
- Physik und Astronomie (sonstige)
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Entropy, Jahrgang 25, Nr. 1, 162, 13.01.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Numerical Calculation of the Irreversible Entropy Production of Additively Manufacturable Off-Set Strip Fin Heat-Transferring Structures
AU - Fuchs, Marco
AU - Lubos, Nico
AU - Kabelac, Stephan
N1 - Funding Information: This research was funded by the Federal Ministry for Economic Affairs and Climate Action (BMWK) based on a resolution of the German Bundestag and AiF Projekt GmbH, grant number “KK5174901SN0”.
PY - 2023/1/13
Y1 - 2023/1/13
N2 - In this manuscript, off-set strip fin structures are presented which are adapted to the possibilities of additive manufacturing. For this purpose, the geometric parameters, including fin height, fin spacing, fin length, and fin longitudinal displacement, are varied, and the Colburn j-factor and the Fanning friction factor are numerically calculated in the Reynolds number range of 80–920. The structures are classified with respect to their entropy production number according to Bejan. This method is compared with the results from partial differential equations for the calculation of the irreversible entropy production rate due to shear stresses and heat conduction. This study reveals that the chosen temperature difference leads to deviation in terms of entropy production due to heat conduction, whereas the dissipation by shear stresses shows only small deviations of less than 2%. It is further shown that the variation in fin height and fin spacing has only a small influence on heat transfer and pressure drop, while a variation in fin length and fin longitudinal displacement shows a larger influence. With respect to the entropy production number, short and long fins, as well as large fin spacing and fin longitudinal displacement, are shown to be beneficial. A detailed examination of a single structure shows that the entropy production rate due to heat conduction is dominated by the entropy production rate in the wall, while the fluid has only a minor influence.
AB - In this manuscript, off-set strip fin structures are presented which are adapted to the possibilities of additive manufacturing. For this purpose, the geometric parameters, including fin height, fin spacing, fin length, and fin longitudinal displacement, are varied, and the Colburn j-factor and the Fanning friction factor are numerically calculated in the Reynolds number range of 80–920. The structures are classified with respect to their entropy production number according to Bejan. This method is compared with the results from partial differential equations for the calculation of the irreversible entropy production rate due to shear stresses and heat conduction. This study reveals that the chosen temperature difference leads to deviation in terms of entropy production due to heat conduction, whereas the dissipation by shear stresses shows only small deviations of less than 2%. It is further shown that the variation in fin height and fin spacing has only a small influence on heat transfer and pressure drop, while a variation in fin length and fin longitudinal displacement shows a larger influence. With respect to the entropy production number, short and long fins, as well as large fin spacing and fin longitudinal displacement, are shown to be beneficial. A detailed examination of a single structure shows that the entropy production rate due to heat conduction is dominated by the entropy production rate in the wall, while the fluid has only a minor influence.
KW - additive manufacturing
KW - heat conduction
KW - irreversible entropy production rate
KW - numerical calculation
KW - off-set strip fin structures
KW - shear stresses
UR - http://www.scopus.com/inward/record.url?scp=85146801445&partnerID=8YFLogxK
U2 - 10.3390/e25010162
DO - 10.3390/e25010162
M3 - Article
AN - SCOPUS:85146801445
VL - 25
JO - Entropy
JF - Entropy
SN - 1099-4300
IS - 1
M1 - 162
ER -