Note on the spectrum of the Hodge-Laplacian for κ-forms on minimal Legendre submanifolds in S2n+1

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Externe Organisationen

  • Max-Planck-Institut für Mathematik in den Naturwissenschaften (MIS)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)107-113
Seitenumfang7
FachzeitschriftCalculus of Variations and Partial Differential Equations
Jahrgang14
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Jan. 2002
Extern publiziertJa

Abstract

Given a minimal Legendre immersion L in S2n+1 and n ≥ k ≥ 1 we prove that n + 1 - κk is an eigenvalue of the Hodge-Laplacian acting on κ and (κ - 1)-forms on L. In particular we show that the eigenspaces Eigk (n + 1 - k) and Eigk-1 (n + 1 - κ) are at least of dimension (nκ).

ASJC Scopus Sachgebiete

Zitieren

Note on the spectrum of the Hodge-Laplacian for κ-forms on minimal Legendre submanifolds in S2n+1. / Smoczyk, Knut.
in: Calculus of Variations and Partial Differential Equations, Jahrgang 14, Nr. 1, 01.01.2002, S. 107-113.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{7caad0f6444841298947eb6837ddaab0,
title = "Note on the spectrum of the Hodge-Laplacian for κ-forms on minimal Legendre submanifolds in S2n+1",
abstract = "Given a minimal Legendre immersion L in S2n+1 and n ≥ k ≥ 1 we prove that n + 1 - κk is an eigenvalue of the Hodge-Laplacian acting on κ and (κ - 1)-forms on L. In particular we show that the eigenspaces Eigk (n + 1 - k) and Eigk-1 (n + 1 - κ) are at least of dimension (nκ).",
author = "Knut Smoczyk",
year = "2002",
month = jan,
day = "1",
doi = "10.1007/s005260100095",
language = "English",
volume = "14",
pages = "107--113",
journal = "Calculus of Variations and Partial Differential Equations",
issn = "0944-2669",
publisher = "Springer New York",
number = "1",

}

Download

TY - JOUR

T1 - Note on the spectrum of the Hodge-Laplacian for κ-forms on minimal Legendre submanifolds in S2n+1

AU - Smoczyk, Knut

PY - 2002/1/1

Y1 - 2002/1/1

N2 - Given a minimal Legendre immersion L in S2n+1 and n ≥ k ≥ 1 we prove that n + 1 - κk is an eigenvalue of the Hodge-Laplacian acting on κ and (κ - 1)-forms on L. In particular we show that the eigenspaces Eigk (n + 1 - k) and Eigk-1 (n + 1 - κ) are at least of dimension (nκ).

AB - Given a minimal Legendre immersion L in S2n+1 and n ≥ k ≥ 1 we prove that n + 1 - κk is an eigenvalue of the Hodge-Laplacian acting on κ and (κ - 1)-forms on L. In particular we show that the eigenspaces Eigk (n + 1 - k) and Eigk-1 (n + 1 - κ) are at least of dimension (nκ).

UR - http://www.scopus.com/inward/record.url?scp=0036461838&partnerID=8YFLogxK

U2 - 10.1007/s005260100095

DO - 10.1007/s005260100095

M3 - Article

AN - SCOPUS:0036461838

VL - 14

SP - 107

EP - 113

JO - Calculus of Variations and Partial Differential Equations

JF - Calculus of Variations and Partial Differential Equations

SN - 0944-2669

IS - 1

ER -

Von denselben Autoren