Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 107-113 |
Seitenumfang | 7 |
Fachzeitschrift | Calculus of Variations and Partial Differential Equations |
Jahrgang | 14 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 1 Jan. 2002 |
Extern publiziert | Ja |
Abstract
Given a minimal Legendre immersion L in S2n+1 and n ≥ k ≥ 1 we prove that n + 1 - κk is an eigenvalue of the Hodge-Laplacian acting on κ and (κ - 1)-forms on L. In particular we show that the eigenspaces Eigk (n + 1 - k) and Eigk-1 (n + 1 - κ) are at least of dimension (nκ).
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Calculus of Variations and Partial Differential Equations, Jahrgang 14, Nr. 1, 01.01.2002, S. 107-113.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Note on the spectrum of the Hodge-Laplacian for κ-forms on minimal Legendre submanifolds in S2n+1
AU - Smoczyk, Knut
PY - 2002/1/1
Y1 - 2002/1/1
N2 - Given a minimal Legendre immersion L in S2n+1 and n ≥ k ≥ 1 we prove that n + 1 - κk is an eigenvalue of the Hodge-Laplacian acting on κ and (κ - 1)-forms on L. In particular we show that the eigenspaces Eigk (n + 1 - k) and Eigk-1 (n + 1 - κ) are at least of dimension (nκ).
AB - Given a minimal Legendre immersion L in S2n+1 and n ≥ k ≥ 1 we prove that n + 1 - κk is an eigenvalue of the Hodge-Laplacian acting on κ and (κ - 1)-forms on L. In particular we show that the eigenspaces Eigk (n + 1 - k) and Eigk-1 (n + 1 - κ) are at least of dimension (nκ).
UR - http://www.scopus.com/inward/record.url?scp=0036461838&partnerID=8YFLogxK
U2 - 10.1007/s005260100095
DO - 10.1007/s005260100095
M3 - Article
AN - SCOPUS:0036461838
VL - 14
SP - 107
EP - 113
JO - Calculus of Variations and Partial Differential Equations
JF - Calculus of Variations and Partial Differential Equations
SN - 0944-2669
IS - 1
ER -