Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 22-51 |
Seitenumfang | 30 |
Fachzeitschrift | Journal of functional analysis |
Jahrgang | 109 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Okt. 1992 |
Extern publiziert | Ja |
Abstract
Normal solvability is shown for a class of boundary value problems on Riemannian manifolds with noncompact boundary using a concept of weighted pseudodifferential operators and weighted Sobolev spaces together with Lopatinski-Shapiro type boundary conditions. An essential step is to show that the standard normal derivative defined in terms of the Riemannian metric is in fact a weighted pseudodifferential operator of the considered class provided the metric is compatible with the symbols.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of functional analysis, Jahrgang 109, Nr. 1, 10.1992, S. 22-51.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Normal solvability of elliptic boundary value problems on asymptotically flat manifolds
AU - Erkip, Albert K.
AU - Schrohe, Elmar
N1 - Copyright: Copyright 2014 Elsevier B.V., All rights reserved.
PY - 1992/10
Y1 - 1992/10
N2 - Normal solvability is shown for a class of boundary value problems on Riemannian manifolds with noncompact boundary using a concept of weighted pseudodifferential operators and weighted Sobolev spaces together with Lopatinski-Shapiro type boundary conditions. An essential step is to show that the standard normal derivative defined in terms of the Riemannian metric is in fact a weighted pseudodifferential operator of the considered class provided the metric is compatible with the symbols.
AB - Normal solvability is shown for a class of boundary value problems on Riemannian manifolds with noncompact boundary using a concept of weighted pseudodifferential operators and weighted Sobolev spaces together with Lopatinski-Shapiro type boundary conditions. An essential step is to show that the standard normal derivative defined in terms of the Riemannian metric is in fact a weighted pseudodifferential operator of the considered class provided the metric is compatible with the symbols.
UR - http://www.scopus.com/inward/record.url?scp=38249008655&partnerID=8YFLogxK
U2 - 10.1016/0022-1236(92)90010-G
DO - 10.1016/0022-1236(92)90010-G
M3 - Article
AN - SCOPUS:38249008655
VL - 109
SP - 22
EP - 51
JO - Journal of functional analysis
JF - Journal of functional analysis
SN - 0022-1236
IS - 1
ER -