Normal solvability of elliptic boundary value problems on asymptotically flat manifolds

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Albert K. Erkip
  • Elmar Schrohe

Externe Organisationen

  • Orta Dogu Technical University
  • Johannes Gutenberg-Universität Mainz
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)22-51
Seitenumfang30
FachzeitschriftJournal of functional analysis
Jahrgang109
Ausgabenummer1
PublikationsstatusVeröffentlicht - Okt. 1992
Extern publiziertJa

Abstract

Normal solvability is shown for a class of boundary value problems on Riemannian manifolds with noncompact boundary using a concept of weighted pseudodifferential operators and weighted Sobolev spaces together with Lopatinski-Shapiro type boundary conditions. An essential step is to show that the standard normal derivative defined in terms of the Riemannian metric is in fact a weighted pseudodifferential operator of the considered class provided the metric is compatible with the symbols.

ASJC Scopus Sachgebiete

Zitieren

Normal solvability of elliptic boundary value problems on asymptotically flat manifolds. / Erkip, Albert K.; Schrohe, Elmar.
in: Journal of functional analysis, Jahrgang 109, Nr. 1, 10.1992, S. 22-51.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Erkip AK, Schrohe E. Normal solvability of elliptic boundary value problems on asymptotically flat manifolds. Journal of functional analysis. 1992 Okt;109(1):22-51. doi: 10.1016/0022-1236(92)90010-G
Erkip, Albert K. ; Schrohe, Elmar. / Normal solvability of elliptic boundary value problems on asymptotically flat manifolds. in: Journal of functional analysis. 1992 ; Jahrgang 109, Nr. 1. S. 22-51.
Download
@article{8e553076f6ca4cb2993908a4b406c20e,
title = "Normal solvability of elliptic boundary value problems on asymptotically flat manifolds",
abstract = "Normal solvability is shown for a class of boundary value problems on Riemannian manifolds with noncompact boundary using a concept of weighted pseudodifferential operators and weighted Sobolev spaces together with Lopatinski-Shapiro type boundary conditions. An essential step is to show that the standard normal derivative defined in terms of the Riemannian metric is in fact a weighted pseudodifferential operator of the considered class provided the metric is compatible with the symbols.",
author = "Erkip, {Albert K.} and Elmar Schrohe",
note = "Copyright: Copyright 2014 Elsevier B.V., All rights reserved.",
year = "1992",
month = oct,
doi = "10.1016/0022-1236(92)90010-G",
language = "English",
volume = "109",
pages = "22--51",
journal = "Journal of functional analysis",
issn = "0022-1236",
publisher = "Academic Press Inc.",
number = "1",

}

Download

TY - JOUR

T1 - Normal solvability of elliptic boundary value problems on asymptotically flat manifolds

AU - Erkip, Albert K.

AU - Schrohe, Elmar

N1 - Copyright: Copyright 2014 Elsevier B.V., All rights reserved.

PY - 1992/10

Y1 - 1992/10

N2 - Normal solvability is shown for a class of boundary value problems on Riemannian manifolds with noncompact boundary using a concept of weighted pseudodifferential operators and weighted Sobolev spaces together with Lopatinski-Shapiro type boundary conditions. An essential step is to show that the standard normal derivative defined in terms of the Riemannian metric is in fact a weighted pseudodifferential operator of the considered class provided the metric is compatible with the symbols.

AB - Normal solvability is shown for a class of boundary value problems on Riemannian manifolds with noncompact boundary using a concept of weighted pseudodifferential operators and weighted Sobolev spaces together with Lopatinski-Shapiro type boundary conditions. An essential step is to show that the standard normal derivative defined in terms of the Riemannian metric is in fact a weighted pseudodifferential operator of the considered class provided the metric is compatible with the symbols.

UR - http://www.scopus.com/inward/record.url?scp=38249008655&partnerID=8YFLogxK

U2 - 10.1016/0022-1236(92)90010-G

DO - 10.1016/0022-1236(92)90010-G

M3 - Article

AN - SCOPUS:38249008655

VL - 109

SP - 22

EP - 51

JO - Journal of functional analysis

JF - Journal of functional analysis

SN - 0022-1236

IS - 1

ER -