Nonlinear optics in thin film interference coatings

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Morten Steinecke

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
  • Detlev Ristau, Betreuer*in
Datum der Verleihung des Grades12 Juli 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Nichtlineare optische Effekte spielen eine essenzielle Rolle in modernen optischen Systemen. Sie finden Anwendung in der Modenkopplung zur Erzeugung ultrakurzer Laserpulse, bei der Generation von Laserwellenlängen, die auf andere Weise nicht verfügbar wären und bei neuartigen Messverfahren. Die Implementierung der benötigten nichtlinearen optischen Prozesse basiert dabei auf konventionellen optischen Aufbauten aus einzelnen Komponenten in Freistrahlkonfigurationen, was die Möglichkeiten für Miniaturisierung und Integration von Funktionsgruppen limitiert. Im Gegensatz dazu sind optische Interferenzbeschichtungen ein hochentwickeltes Verfahren für die Kombination von optischen Funktionen in einzelne, monolithische Schichtsysteme aus transparenten Materialien. Bisher waren die Anwendungen von optischen Beschichtungen dabei auf den linearen Bereich der optischen Wechselwirkung beschränkt. Wenn nichtlineare optische Effekt berücksichtigt wurden, dann üblicherweise nur, um diese als unerwünschte Effekte zu unterdrücken. Diese Arbeit untersucht daher die Kombination von ausgewählten nichtlinearen optischen Effekten mit speziell entworfenen optischen Beschichtungen. Ziel hierbei ist die Schaffung von neuartigen Komponenten, die als Alternative zu etablierten optischen Systemen fungieren können. Wegen der amorphen Struktur der Beschichtungsmaterialien, basieren die zwei betrachteten nichtlinearen Effekte auf der Suszeptibilität der dritten Ordnung χ(3). Der erste Effekt ist der optische Kerr-Effekt, welcher genutzt wird, um einfallendes Licht ausschließlich optisch zu schalten. Im zweiten Fall werden optische Beschichtungen genutzt, um das Problem der Phasenanpassung bei Erzeugung der dritten Harmonischen in frequenzverdreifachenden Spiegeln zu lösen und so die Konversionseffizienz deutlich zu erhöhen. Für beide dieser Anwendungen werden die Herstellungsverfahren, die Untersuchung der benötigten optischen Materialien, sowie die experimentelle Überprüfung der hergestellten Komponenten präsentiert. Die Untersuchungen haben gezeigt, dass die frequenzverdreifachenden Spiegel zwar die Konversionseffizienz deutlich steigern können, aktuell aber noch durch die Generation freier Elektronen sowie die daraus resultierenden Effekte limitiert werden. Die optischen Schalter zeigen eine deutliche Modulation ihrer optischen Eigenschaften mit Änderungen der Transmission und Reflexion um etwa 20% beziehungsweise 30%. Der Modulationsprozess ist dabei ein reproduzierbarer Prozess, der klar von der laserinduzierten Zerstörung bei höheren Intensitäten unterschieden werden kann. Der geschaffene optische Schalter kann daher eine funktionale Alternative zu etablierten Schaltkonzepten darstellen.

Zitieren

Nonlinear optics in thin film interference coatings. / Steinecke, Morten.
Hannover, 2023. 128 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Steinecke, M 2023, 'Nonlinear optics in thin film interference coatings', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/14149
Steinecke, M. (2023). Nonlinear optics in thin film interference coatings. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/14149
Steinecke M. Nonlinear optics in thin film interference coatings. Hannover, 2023. 128 S. doi: 10.15488/14149
Steinecke, Morten. / Nonlinear optics in thin film interference coatings. Hannover, 2023. 128 S.
Download
@phdthesis{25109764e81a458d980afd3327e9aabe,
title = "Nonlinear optics in thin film interference coatings",
abstract = "Nonlinear optical effects play a crucial role in modern optical systems. They are applied in mode-locking for the generation of ultrashort optical pulses, in the generation of otherwise unavailable wavelengths, or for new approaches in measurement techniques. However, implementing the required nonlinear optical processes mainly relies on conventional optical systems comprising separate components and free-space constructions, which limits the possibilities for miniaturization and integration of functional groups. Contrary to this, optical interference coatings offer highly developed capabilities for combining optical functions into a single, monolithic stack of transparent materials. So far, the applications of optical coatings have generally been limited to the linear optical regime. If nonlinear effects were considered, it was mostly directed at their suppression to avoid undesired effects. This thesis, therefore, investigates the combination of selected nonlinear optical effects with specially designed optical coatings to create novel components as alternatives to established optical systems. Due to the amorphous nature of thin film coating materials, the two effects chosen for investigation are based on the third-order susceptibility χ(3). The first effect is the optical Kerr effect, which is utilized to achieve all-optical switching of incident light. In the second case, optical coatings are utilized to solve phase matching issues for the third harmonic generation in frequency tripling mirrors and significantly increase conversion efficiency. The manufacturing processes and material research are presented for both approaches, together with the experimental testing of the novel components{\textquoteright} function. It was found that while the frequency tripling mirrors provide a greatly enhanced efficiency compared to the third harmonic generated in more typical optical coatings, the total efficiency is currently limited by free-electron effects occurring during the conversion process. The optical switches show significant modulation of 20% in transmittance and 30% in reflectance with a repeatable process which can be clearly distinguished from laser-induced damage occurring at higher intensities. Therefore, the created optical switch can present a viable alternative to established switching concepts.",
author = "Morten Steinecke",
year = "2023",
doi = "10.15488/14149",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Nonlinear optics in thin film interference coatings

AU - Steinecke, Morten

PY - 2023

Y1 - 2023

N2 - Nonlinear optical effects play a crucial role in modern optical systems. They are applied in mode-locking for the generation of ultrashort optical pulses, in the generation of otherwise unavailable wavelengths, or for new approaches in measurement techniques. However, implementing the required nonlinear optical processes mainly relies on conventional optical systems comprising separate components and free-space constructions, which limits the possibilities for miniaturization and integration of functional groups. Contrary to this, optical interference coatings offer highly developed capabilities for combining optical functions into a single, monolithic stack of transparent materials. So far, the applications of optical coatings have generally been limited to the linear optical regime. If nonlinear effects were considered, it was mostly directed at their suppression to avoid undesired effects. This thesis, therefore, investigates the combination of selected nonlinear optical effects with specially designed optical coatings to create novel components as alternatives to established optical systems. Due to the amorphous nature of thin film coating materials, the two effects chosen for investigation are based on the third-order susceptibility χ(3). The first effect is the optical Kerr effect, which is utilized to achieve all-optical switching of incident light. In the second case, optical coatings are utilized to solve phase matching issues for the third harmonic generation in frequency tripling mirrors and significantly increase conversion efficiency. The manufacturing processes and material research are presented for both approaches, together with the experimental testing of the novel components’ function. It was found that while the frequency tripling mirrors provide a greatly enhanced efficiency compared to the third harmonic generated in more typical optical coatings, the total efficiency is currently limited by free-electron effects occurring during the conversion process. The optical switches show significant modulation of 20% in transmittance and 30% in reflectance with a repeatable process which can be clearly distinguished from laser-induced damage occurring at higher intensities. Therefore, the created optical switch can present a viable alternative to established switching concepts.

AB - Nonlinear optical effects play a crucial role in modern optical systems. They are applied in mode-locking for the generation of ultrashort optical pulses, in the generation of otherwise unavailable wavelengths, or for new approaches in measurement techniques. However, implementing the required nonlinear optical processes mainly relies on conventional optical systems comprising separate components and free-space constructions, which limits the possibilities for miniaturization and integration of functional groups. Contrary to this, optical interference coatings offer highly developed capabilities for combining optical functions into a single, monolithic stack of transparent materials. So far, the applications of optical coatings have generally been limited to the linear optical regime. If nonlinear effects were considered, it was mostly directed at their suppression to avoid undesired effects. This thesis, therefore, investigates the combination of selected nonlinear optical effects with specially designed optical coatings to create novel components as alternatives to established optical systems. Due to the amorphous nature of thin film coating materials, the two effects chosen for investigation are based on the third-order susceptibility χ(3). The first effect is the optical Kerr effect, which is utilized to achieve all-optical switching of incident light. In the second case, optical coatings are utilized to solve phase matching issues for the third harmonic generation in frequency tripling mirrors and significantly increase conversion efficiency. The manufacturing processes and material research are presented for both approaches, together with the experimental testing of the novel components’ function. It was found that while the frequency tripling mirrors provide a greatly enhanced efficiency compared to the third harmonic generated in more typical optical coatings, the total efficiency is currently limited by free-electron effects occurring during the conversion process. The optical switches show significant modulation of 20% in transmittance and 30% in reflectance with a repeatable process which can be clearly distinguished from laser-induced damage occurring at higher intensities. Therefore, the created optical switch can present a viable alternative to established switching concepts.

U2 - 10.15488/14149

DO - 10.15488/14149

M3 - Doctoral thesis

CY - Hannover

ER -